
cityofnovi.org

## EVERBROOK/LEARNING CARE ACADEMY SP15-57

## Everbrook/Leaming Care Academy JSP15-57

Public hearing at the request of ICAP Development forapproval of the Special Land Use Pemit, Preliminary Site Plan, and Stormwater Management Plan. The subject property is located west of Beck Road and north of Eleven Mile Road in Section 17 on 4.15 acres. The applicant is proposing to construct a daycare facility in an 11,844 square foot free-standing building to serve 138 children and 22 staff members with site improvements including parking, storm water, landscape, and recreation area for kids. A daycare facility is considered a Special Land Use under PSLR overlay. A Traffic Impact Study has been submitted and reviewed by the City's Traffic Engineering consultant.

## Required Action

Approve/deny the Special Land Use Pemit, Preliminary Site Plan, and Stomwater Management Plan.

| REVIEW | RESULT | DATE | COMMENTS |
| :---: | :---: | :---: | :---: |
| Planning | Approval recommended | 4-29-16 | - Items to be addressed by the applicant prior to Final Site Plan approval |
| Engineering | Approval recommended | 4-18-16 | - Items to be addressed by the applicant prior to Final Site Plan approval |
| Landscaping | Approval recommended | 4-19-16 | - Items to be addressed by the applicant prior to Final Site Plan approval |
| Traffic | Approval recommended | 4-28-16 | - Applicant to extend deceleration lane on Beck Road to meet City Standards or seek approval of a DCS variance from City Council. <br> - Items to be addressed by the applicant prior to Final Site Plan approval |
| Wetland | No review required | N/A |  |
| Woodland | No review required | N/A |  |
| Façade | Approval recommended | 4-6-16 | - Full compliance, no waiver required |
| Fire | Approval recommended | 4-6-16 | - All items have been addressed |

## MOTION SHEET

## Approval - Special Land Use Permit

In the matter of Everbrook/Leaming Care Academy, JSP15-57, motion to approve the Special Land Use Pemit based on and subject to the following:
a. The proposed use will not cause any detrimental impact on existing thoroughfares (as indicated by the Traffic Impact Study and as a result of the recommendations of that study);
b. The proposed use will not cause any detrimental impact on the capabilities of public servic es a nd fa cilities;
c. The proposed use is compatible with the natural features and characteristic s of the la nd (beca use the plan will not impact a ny existing natural features);
d. The proposed use is compatible with adjacent uses of land (because the proposed use confoms to the PSLR a greement and all sta ndardsfor a day care center);
e. The proposed use is consistent with the goals, objectives, and recommendations of the City's Master Pla n for La nd Use;
f. The proposed use will promote the use of land in a socially and economically desirable ma nner,
g. The proposed use is (1) listed among the provision of uses requiring special land use review as set forth in the various zoning districts of this Ordinance, and (2) is in hamony with the purposes and conforms to the applicable site design regulations of the zoning district in which it is located; and
h. (additional comments here if a ny)
(This motion is made because the plan is otherwise in compliance with Article 3 , Article 4, Article 5 , and Article 6 of the Zoning Ordinance and all other applicable provisions of the Ordinance.)

- AND -

Approval - Preliminary Site Plan
In the matter of Everbrook/Leaming Care Academy, J SP15-57, motion to approve the Preliminary Site Plan based on and subject to the following:
a. Applicant shall extend the proposed Beck Road deceleration lane to meet City Standards, or seek City Council approval of a Design and Construction Standards variance;
b. The findings of compliance with Ordinance standards in the staff and consultant review letters and the conditions and the items listed in those letters being addressed on the Final Site Plan; and
c. (additional conditions here if a ny)
(This motion is made because the plan is otherwise in compliance with Article 3 , Article 4, and Article 5 of the Zoning Ordinance and all other applicable provisions of the Ordinance.)

- AND -


## Approval - Stommater Management Plan

In the matter of Everbrook/Leaming Care Academy, JSP15-57, motion to approve the StormwaterManagement Plan based on and subject to the following:
a. The findings of compliance with Ordinance standards in the staff and consultant review letters, and the conditions and items listed in those letters being addressed on the Final Site Plan; and
b. (additional conditions here if a ny)
(This motion is made because the plan is otherwise in compliance with Chapter 11 of the Code of Ordinances and all other applic able provisions of the Ordinance.)

- OR-


## Denial - Special Land Use Permit

In the matter of Everbrook/Leaming Care Academy, J SP15-57, motion to deny the Special Land Use Permit...(because the plan is not in compliance with Article 4, Article 5, and Article 6 of the Zoning Ordinance and all other applicable provisions of the Ordinance.)

- AND -


## Denial - Preliminary Site Plan

In the matter of Everbrook/Leaming Care Academy, JSP15-57, motion to deny the Preliminary Site Plan...(because the plan is not in compliance with Article 3, Article 4, and Article 5 of the Zoning Ordinance and all other applicable provisions of the Ordinance.)

- AND -


## Denial - Stormwater Management Plan

In the matter of Everbrook/Leaming Care Academy, J SP15-57, motion to deny the Stormwater Management Plan...(because the plan is not in compliance with Chapter 11 of the Code of Ordinances and all other applicable provisions of the Ordinance.)

Maps
Location
Zoning
Future Land Use Natural Features




(Full plan set a vailable for viewing at the Community Development Department)


## Greenbergfarrow  PROJECT TEAM

GENERAL SITE NOTES:



## SEE C2.1


$\square$
笽
 (7)

 (0) (1)-

SEE C2.2
$+$







-
$-\frac{-1}{-2}$

GRAPHIC SCAL

Rooses ves





$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

PLANNING REVIEW

# PLAN REVIEW CENIER REPORT <br> April 29, 2016 <br> Planning Review <br> Everbrook/Leaming Care Academy <br> J SP15-57 

## Petitioner

ICAP Development

## Review Type

Prelimina ry Site Pla n

## Property Characteristics

- Site Location: West of Beck Road and north of Eleven Mile Road (Section 117)
- Site Zoning: R-3 (One-Fa mily Residential) with PSLR (Planned Suburban Low-Rise) Overlay
- Adjoining Zoning: West, North and South: R-3; Ea st: RA-Residential Ac reage;
- Adjoining Uses: North: Single family residential; Other sides: vac ant
- School District: Novi School District
- Site Size: $\quad 4.15$ acres
- Plan Date: 03.29.16


## Project Summary

The subject property is curently vac ant and measures 4.15 acres. The applic ant is proposing to construct a daycare facility in an 11,844 square foot free-standing building to serve 138 children and 22 staff members with site improvements including parking, storm water, landscape, and rec reation area for kids. A dayc are facility is considered a Special Land Use under PSLR overlay. A Traffic Impact Study has been submitted and reviewed by the City's Traffic Engineering consultant.

## Recommendation

Approval of the Preliminary Site Plan is recommended with changes addressed on the Final Site Plan submittal.

## Project History

The Planning Commission held a public hearing on November 4, 2015 recommending the approval of the Planned Suburban Low-Rise (PSLR) Overlay Development Agreement and Concept Plan to the City Council.

The City Council on November 23, 2015 tentatively approved the PSLR Overlay Development Agreement and Concept Plan. The City Council on April 18, 2016 approved the PSLR Overlay Development Agreement and revised Concept Plan.

## Special Land Use Considerations

A special land use requires a public hearing and approval from the Planning Commission of the special land use, preliminary site plan, and stormwater management plan. Section 6.1.2.C of the Zoning Ordinance outlines specific factors the Planning Commission shall consider in the review of any Special Land Use:
i. Whether, relative to other feasible uses of the site, the proposed use will cause any detrimental impact on existing thoroughfares in tems of overall volumes, capacity, safety, vehic ular tuming pattems, intersections, view obstructions, line of sight, ingress and egress, acceleration/deceleration lanes, off-street parking, off-street loading/unloading, travel times and thoroughfare level of service.
ii. Whether, relative to other feasible uses of the site, the proposed use will cause any detrimental impact on the capabilities of public services and facilities, including water service, sanitary sewer service, storm water disposal and police and fire protection to service existing and planned uses in the area.
iii. Whether, relative to other feasible uses of the site, the proposed use is compatible with the natural features and characteristics of the land, including existing woodlands, wetlands, waterc ourses and wildlife habitats.
iv. Whether, relative to other feasible uses of the site, the proposed use is compatible with adjacent uses of land in terms of location, size, character, and impact on adjacent property or the surrounding neighborhood.
v. Whether, relative to other feasible uses of the site, the proposed use is consistent with the goals, objectives, and recommendations of the City's Master Plan for Land Use.
vi. Whether, relative to other feasible uses of the site, the proposed use will promote the use of land in a socially and economically desirable manner.
vii. Whether, relative to other feasible uses of the site, the proposed use is
a. listed a mong the provision of uses requiring special land use review as set forth in the various zoning distric ts of this Ordinance, and
b. is in ha mony with the purposes and conforms to the applicable site design regulations of the zoning district in which it is located.

## Ordinance Requirements

This project was reviewed for conformance with the Zoning Ordinance with respect to Article 3 (Zoning Districts) Article 4 (Use Standards), Article 5 (Site Standards), and any other applicable provisions of the Zoning Ordinance. Items in bold below must be addressed by the applicant prior to Preliminary Site Plan approval.

1. Building, Parking and Accessory Setbacks (Sec. 3.1.23.D): The site plan indicates the setbacks measured from the existing property line. The setbacks are required to be measured from the proposed Right-of-Way after dedication. Please revise the drawings to indicate the proper setbacks.
2. Loading Spaces (Sec. 3.21.2.A.vi): Loading spaces required based on the proposed use. The current site plan does not indicate a loading space. If the proposed use does not require a loading space, then the applicantshall provide the reasoning in the response letter.
3. Outdoor Lighting (Sec. 3.21.2.A.x): Outdoor lighting of parking lots, access drives, and pedestrian and bicycle facilities shall meet the special conditions. Provide light details of height and cut-off angle. Provide note if direct light source is not visible at road ROW. Adjust lighting to meet maximum illumination at property line of one-half foot-candle.
4. Day Care Standards (Sec. 4.12.2): The hours of operation shall be limited to the period between 6 a.m. and 7 p.m. for those facilities abutting residential zoning districts. Provide hours of operation of the day care facility on the plan sheet
5. Building Design Standards (Sec. 3.1.27.D): Provide the maximum percent of lot covered buildings including accessory buildings as a note on the plan sheet
6. Accessory Buildings, Maximum Area (Sec. 4.19.1.C): Provide total floor area of all accessory buildings and the total area of the rear yard.
7. Bicycle Parking General Requirements (Sec. 516): Bicycle parking shall be accessible via a 6 ft . paved sidewalk. Provide the dimensions of the sidewalk adjacent to the bike parking area and adjust if not 6 ft
8. Dumpster Enclosure (Sec. 21-145 (c) of City Code): Provide dumpster and enclosure details on the plans that adhere to the City Code requirements.
9. Fences, Maintenance (Sec. 5.11.3.B): Provide a note on the plans "All fences shall comply with applicable provisions of the curent City of Novi Property Maintenance Code."
10. Rooftop Equipment (Sec. 4.19.2.E.ii): Provide a note on the plans "All rooftop equipment must be screened and all wall mounted utility equipment must be enclosed and integrated into the design and color of the building."
11. Pedestrian Connectivity: Provide a sidewalk connection from in front of the building to the proposed sidewalk in the road right-of-way.
12. Legal Documents: Once Preliminary Site Plan approval is obtained, please provide the Master Deed and ROW dedication legal documents with the Final Site Plan submittal.

## Other Reviews

a. Engineering Review: Recommends approval.
b. Landscape Review: Recommends approval with items to be addressed on the Final Site Plan.
c. Wetland Review: No further review is necessary; there are no wetla nds on site.
d. Woodland Review: No further review is necessary; the site does not impact the on-site woodlands.
e. Traffic Review: Recommends approval with comments addressed on the Final Site Plan.
f. Traffic Impact Study Review: Recommends approval with comments.
g. Facade Review: Recommends approval; no waivers required.
h. Fire Review: Recommends approval, all comments have been addressed.

## Response Letter

With this submittal, all reviewers are recommending approval. This Site Plan is scheduled to go before Planning Commission on May 11, 2016. Please provide the following no later than May 4, 2016 by 9:00 am if you wish to keep the schedule.

1. A response letter addressing $\mathbf{A L}$ the comments from $\mathbf{A L}$ the review letters.
2. A PDF version of a ll the Site Plan dra wings that were dated 03.29.2016. NO CHANGESMADE
3. A color rendering of the Site Plan, if any.

## Signage

Two monument signs are proposed for this project. Please submit sign permit applications. Contact J eannie Niland [248.347.0438] in the Community Development Department for information regarding sign permits. Exterior Signage is not regulated by the Planning Division or Planning Commission.

## Site Addressing

The applicant should contact the Building Division for an address prior to applying for a building permit. Building permit applications cannot be processed without a correct address. Please contact and submit an application to Jeannie Niland [248.347.0438] in the Community Development Department.

## Pre-Construction Meeting

Prior to the start of any work on the site, Pre-Construction (Pre-Con) meetings must be held with the applicant's contractor and the City's consulting engineer. Pre-Con meetings are generally held after Stamping Sets have been issued and prior to the start of any work on the site. There are a variety of requirements, fees, and permits that must be issued before a Pre-Con can be scheduled. If you have questions, please contact Sarah Marchioni [248.347.0430 or smarchioni@cityofnovi.org] in the Community Development Department.

## Chapter 26.5

Chapter 26.5 of the City of Novi Code of Ordinances generally requires all projects be completed within two years of the issuance of any starting permit. Please contact Sarah Marchioni [248.347.0430 or smarchioni@cityofnovi.org] in the Community Development Department for additional information on starting permits. The applicant should review and be aware of the requirements of Chapter 26.5 before starting construction.

If the applicant has any questions conceming the above review or the process in general, do not hesita te to contact me at 248.347 .0484 or kmellem@c ityofnovi.org.


Kirsten Belem, Planner


PLANNING REVIEW CHART: PSLR-Everbrook/Leaming Care Academy
Review Date: April 21, 2016
Review Type: Preliminary Site Plan
Project Name: J SP15-57
Plan Date:
Prepared by:
Contact
March 29, 2016
Kirsten Mellem, Pla nner
E-mail: kmellem@cityofnovi.org Phone: 248.347.0484
Items in Bold need to be addressed by the applicant with the Preliminary Site Plan. Underlined items need to be addressed prior to the approval of the Final Site Plan

| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Zoning and Use Requirements |  |  |  |  |
| Master Plan (adopted August 25, 2010) | Suburban Low-Rise | Suburban Low-Rise | Yes |  |
| Area Study | The site does not fall under any special category | NA | Yes |  |
| Zoning (Effective December 25, 2013) | R-3(One Family Residential) with PSLR(Planned Suburban Low-Rise )overlay | PSLR | Yes | PSLR Agreement and Concept Plan approved by City Council on 4/18/2016. |
| Uses Permitted (Sec 3.1.27.B \& C) | Sec 3.1.27.B Principal Uses Permitted. Sec 3.1.27.C Special Land Uses | Day Care Centers, subject to special conditions | Yes | Special Land Use Permit required under PSLR. |
| 3.21 PSLR Required Conditions |  |  |  |  |
| Narrative <br> (Sec. 3.32.3.A) | Explain how the development exceeds the standards of this ordinance | A na rrative is provided | Yes |  |
| PSLR Overlay Concept Plan: Required Items (Sec. 3.21.1.A) | i. Legal description and dimensions | Provided | Yes |  |
|  | ii. Existing zoning of site/adjacent properties | Provided | Yes |  |
|  | iii. Existing natural features such as wetlands and proposed impacts | No Wetla nds on site | NA |  |
|  | iv. Existing woodlands and proposed impacts | Few regulated woodlands on site. Plan indic ates all existing trees will be saved. | Yes | Site plan will not be affecting onsite woodlands. |
|  | v. Existing and proposed rights-ofway and road layout | The current site plan indic ates proposed ROW for the private drive and ROW | Yes |  |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
|  |  | dedic ation along Beck Road for sidewalk and other improvements. |  |  |
|  | vi. Bicycle/pedestrian plan | Eight foot pathway shown along Eleven Mile Road | Yes |  |
|  | vii. Conceptual storm watermanagement plan | Provided | Yes |  |
|  | viii. Conceptual utility plan | Provided | Yes |  |
|  | ix. Building Parking and Wetland Setback requirements | Provided | Yes |  |
|  | x. Conceptual layout | Provided | Yes |  |
|  | xi. Conceptualopen space/recreation plan | Provided | Yes |  |
|  | xii. Conceptual streetscape landscape plan | Provided | Yes |  |
| PSLR Overlay Concept Plan: Optional Items (Sec. 3.21.1.A) | xiii. Parking plan | Provided | Yes | Referto Traffic review letterfor additional comments |
|  | xiv. Detailed layout plan | Provided | Yes |  |
|  | xv. Residential density calculations and type of units | Residential option not proposed | NA |  |
|  | xvi. Detailed open space/recreation |  | NA |  |
|  | xvii. Detailed streetscape landscape plan |  | NA |  |
|  | xviii. Graphic description of each deviation from the a pplic able ordinance requested |  | NA |  |
|  | xix. Phasing plan | Phasing not indicated | NA |  |
| Community Impact Statement (Sec. 3.21.1.B) | Sta tement is required, if the petition area is 10 acresormore | Total project area is 4.15 Acres | NA |  |
| Traffic Impact Study <br> (Sec. 3.21.1.C) | Study as required by the City of Novi Site Plan and Development Manual | A traffic impact study was provided. Dated 1-6-2016. | Yes |  |
| Proposed Ordinance Deviations (Sec. 3.21.1.D) | List all proposed ordinance deviations with supporting na rrative. | Provided | No | Deviations approved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Required PSLR Overlay Use Standards/ Conditions forspecial land uses (Sec. 3.21.2) |  |  |  |  |
| Site Standards (Sec. 3.21.2.A) |  |  |  |  |
| Building Frontage (Sec. 3.21.2.A.i) | Build ings shall front on a dedic ated non-section line public street oran approved private drive | Frontage on a private drive | Yes | Note that private drive shall be built according to private road standards perDCSManual. |
| Building <br> Setbacks <br> (Sec. 3.21.2.A.ii) <br> \& (Sec 3.1.27.D) | Minimum front yard setback: 30 ft* Maximum front yard setback: 75 ft . | For the purpose of this review, frontage along proposed drive on the south is considered front yard. Proposed building appears to exceed the maximum setback. | No | Build ing maximum setback deviation approved at City Council meeting on 4-18-2016. |
| *The maximum front and exterior side yard setback requirement when adjacent to roadsand drives (other than planned or existing section line road right-of-way) is 75 feet. | Minimum rearyard setback: 30 ft | More than 30 ft . | Yes |  |
|  | Exterior side yard adjacent to roadsand drives $30 \mathrm{ft}^{*}$ |  | NA |  |
|  | Exterior side yard adjacent to planned or existing section line road ROW 50 ft | Frontage along Beck Road (Section line) is considered an Exterior side yard. Proposed building appears to be in conformance. | Yes |  |
|  | Interior side yard 30 ft | 30 ft . for proposed building | Yes |  |
|  | Building to building 30 ft | Single building | NA |  |
|  | Building Comerto comer: 15 ft | Single building | NA |  |
| Landscape Buffer (Sec. 3.21.2.A.iii) and Berms (Sec. 5.5.3) | All build ings, parking lots, and loading areasshall be separated from section line road rights-of-way by a 50 ft landscape buffer conta ining an undulating $3-5 \mathrm{ft}$. tall landsc aped berm. |  | No | Deviations a pproved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |
| Parking spaces forall uses in the district (except for townhouse style multiplefamily dwellings that provide private garages foreach dwelling unit) (Sec. 3.21.2.A.iv) | Located only in the rear yard or interior side yard | Few located in the front yard and exterior side yard. | No | Deviations a pproved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |
|  | Screened by $3-5 \mathrm{ft}$. undulating berm from adjacent streets per Section 5.5.3. |  | No | Deviations a pproved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |
|  | All parking and access a isles shall be min. 15 ft . from all buildings. | Parking is proposed at 15.04' from building. | Yes |  |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Parking Setbacks (Sec. 3.21.2.A.iv.d) <br> * except that | Front yard parking is not permitted* | Partial parking is proposed in front yard | No | Deviations approved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |
|  | Exterior side yard adjacent to a section line road - 50 ft . min | Minimum 50 ft. provided | Yes |  |
| * except that parking spaces for townhouse developments shall be | Exterior side yard adjacent to a local street - 30 ft . min | No exterior side yard identified | NA |  |
| shall be permitted in the front yard setback when | Interior side yards adjacent to single family residential districts- 30 ft . min | Southem and northem yard abuts single family residential Side yards $=30 \mathrm{ft}$. | Yes |  |
| the parking area is also a driveway access to a parking garage contained within the unit. | Interior side yards not adjacent to a single fa mily residential district 15 ft . min | NA | NA |  |
| Open Space <br> Recreation requirements for Multi-Family Residential Developments (Sec. 3.21.2.A.v) | Minimum of 200 square feet of private opens space accessible to build ing (includes covered porches, balconiesand patios) | Not a Multi-family development | NA |  |
|  | Common open space areasas central to project as possible | Not a Multi-family development | NA |  |
|  | Active recreation areas shall be provided with at least $50 \%$ of the open spacesdedicated to active recreation | Not a Multi-family development | NA |  |
|  | Active recreation shall consist 10\% of total site area. | Not a Multi-family development | NA |  |
| Other <br> Applicable <br> Zoning <br> Ordinances <br> (Sec. 3.21.2.A.vi, vii and ix) | Loading and Unloading perSection 5.4 | Loading spacesare not proposed | Yes | Loading spaces are not required for PSLR overlay unless the use requires one. Please provide additional information if loading space is not required for the proposed use. |
|  | Off-street Pa rking per Section 5.2 and 5.3 | Parking is in general conformance with the standardsexcept few places | No | Deviations approved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
|  | Landscaping per Section 5.5: All sites shall include streetsc a pe a menities such as but not limited to benches, pedestrian plazas, etc. |  | No | Deviations a pproved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |
| Building length (Sec. 3.21.2.A.vii) | Maximum building length as desc ribed in Sec 3.21.3.A.viil shall not exceed 180 ft | A minimum of 90 ft . and a maximum of 130 ft . proposed | Yes |  |
|  | City Council may modify the minimum length up to a maximum of 360 ft . if: <br> Building includes recreation space formin. 50 people Build ing is setback 1 ft . for every 3 ft . in excess of 180 ft . from all residential districts. | Additional length not requested | NA |  |
| Outdoor Lighting (Sec. 3.21.2.A.x) | Maximum height of light fixtures: 20 ft . | Unable to determine | No | Provide light details on photometric sheet stating height and cut-off angle. <br> If in conformance, please add a note to the site plan. <br> Update plan to reflect |
|  | Cut-off angle of 90 degreesorless | Unable to determine | No |  |
|  | No direct light source shall be visible at any property line abutting a section line road right-of way at ground level. | If in conformance, please add a note to the site plan. | No |  |
|  | Maximum Illumination at property line: 0.5 fc | Exceeds 0.5fvc | No | Update plan to reflect max 0.5fc at property line. |
| Day Care Standards (Sec. 4.12) |  |  |  |  |
| Outdoor recreation areas (Sec. 4.12.2.i.a) | 150 sq.ft. foreach person cared for, with 3,500 sf minimum total | ```Play area required: 20,700 SF Play area provided: 20,728 SF``` | Yes |  |
|  | All areas shall be fenced with self-closing gates | Recreation areas are fenced in. | Yes |  |
|  | Recreation area may extend into an exterior side yard up to $25 \%$ of the distance between building façade and the property line | Recreation area is proposed in front, interior side and the rear yard. | NA |  |
| Hours of Operation | They shall be limited to period between 6 am and 7 pm abutting residential districts | Hours of operation not provided | No | Provide hours of operation on the plan sheet |
| Location | Facilities shall be located eitherwithin a permitted | Facilities located in a free standing building | Yes |  |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
|  | office, or in a commercial structure or a free standing building with surrounding development | with surrounding development. |  |  |
| Circulation Standards (Sec. 3.21.2.B) |  |  |  |  |
| Full Time Access (Sec. 3.21.2.B) | Full time access drives shall be connected only to non-section line roads | Full time access drives are connected to a proposed private drive | Yes |  |
| Emergency Access (Sec. 3.21.2.B) | Emergency access with access gate may be connected to section line roads when no other practicallocation is a vailable | No Emergency accessis proposed. But two accesspoints are provided to the site from Section line road. Fire is good with the altemative | Yes |  |
| Connection to Neighboring Properties (Sec. 3.21.2.B.i) | New roads should provide public access connectionsto neighboring properties at location(s) acceptable to the City and the neighboring property | Layout is designed to a llow for future connections to property on south and north. | Yes |  |
| New Roads (Sec. <br> 3.21.2.B.ii.a) | New roads shall be designed as pedestrian/bicycle foc used coridors as identified in the NonMotorized Master Plan | Part of Beck road along the subject property is identified asa major coridor in City's NonMotorized Plan. A eight foot pathway is proposed along Beck Road | Yes |  |
| Non-Motorized Facilities (Sec. <br> 3.21.2.B.ii.b) | Fa cilities shall be connected to the existing pedestrian network | Sidewalks are proposed within the site and connected to Beck Road | Yes |  |
| Proposed NonMotorized Facilities (Sec. <br> 3.21.2.B.ii.c) | Where existing nonmotorized facilities do not exist on adjacent neighboring properties, facilities shall be stubbed to the property line. | A 5 foot sidewalk is proposed on either side of the proposed Public drive | Yes |  |
| Building Design Standards (Sec. 3.21.2.C) |  |  |  |  |
| Building Height (Sec. 3.21.2.C.i) | 35 ft . or $2^{1 / 2}$ stories | Maximum height is noted to be kept at 24ft. | Yes |  |
| Building Design (Sec. 3.21.2.C.ii) | Build ings must be designed with a "singlefa mily residential character" | The proposed building meets the intent of the PLSR district | Yes | Referto Façade comments for further details |
| Maximum \% of LotArea Covered (Sec. 3.1.27.D) | 25\% | Not provided. | No | Provide the maximum percent of lot covered buildings inc luding accessory buildings. |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Accessory Buildings |  |  |  |  |
| Setbacks <br> (Sec. 4.19.1.G) | It shall not be located closer than <br> - ten (10) feet to any ma in building six (6) feet to any interior side lot or rear lot line. | Three canopies are provided in multiple locations within the play area. They appearto be in conformance | Yes |  |
| Location <br> (Sec. 4.19.1.B) | Accessory build ings shall not be erected in any required front yard or in a ny required exterior side yard. | Structures are loc ated in the interior side yard and rearyard | Yes |  |
| Maximum Area (Sec. 4.19.1.C) | The total floor a rea of all accessory build ings shall not occupy more than twenty-five (25) percent of any required rearyard. |  | No | Provide actual percentage on the plans. |
| $\begin{aligned} & \text { Design } \\ & \text { (Sec. 4.19.1.L) } \end{aligned}$ | All attached and detached accessory buildings in excess of two-hundred (200) square feet shall be designed and constructed of materials and architecture compatible with the principal structure, and shall have a minimum roof pitch of $3 / 12$ and overhangs of no less than six (6) inches. | Each canopy structure measures 100 sq. ft. and storage shed is 196.85 sq. ft. | Yes |  |
| Fagpoles (Sec. 4.19.2.B) | Flagpoles may be located within any required front or exterior side yard. Such poles shall be located no closerto a public right-of-way than one-half (1⁄2) the distance between the right-of-way and the principal building. | A flagpole is not indic ated on the revised plans | NA |  |
| Number of Structures (Sec. 4.19.1.J) | Not more than two (2) detached accessory build ings shall be permitted on any lot having twenty-one thousand seven hundred eighty $(21,780)$ square feet of area or more. | Three canopy structures and one shed are proposed on this property. | No | Deviations approved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |


| Item | Required Code | Meets <br> Code | Comments |
| :--- | :--- | :--- | :--- | :--- |
| Note To District Standards (Sec 3.6.2) |  |  |  |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
|  | in the Zoning Ordinance |  |  |  |
| BarierFree Spaces Ba mier Free Code | 1 bamier free parking spaces (for total 26 to 50)\& 1 van ba mier free parking space | 2 spaces provided. | Yes |  |
| BanierFree Space Dimensions Ba mier Free Code | - 8' wide with an $8^{\prime}$ wide access aisle for van accessible spaces - 5 ' wide with a 5 ' wide access aisle for regular accessible spaces | 1 common 8 ft . a isle proposed. | Yes |  |
| BamierFree Signs Ba mier Free Code | One sign for each accessible parking space. | Signs proposed. | Yes |  |
| Minimum number of Bicycle Parking (Sec. 5.16.1) | One (1) space foreach twenty (20) employees on the maximum shift, minimum two (2) spaces | 3 bike racks are indic ated on the plan. | Yes |  |
| Bicycle Parking General requirements (Sec. 5.16) | - No farther than 120 ft . from the entrance being served <br> - When 4 ormore spaces are required fora build ing with multiple entrances, the spaces shall be provided in multiple locations <br> - Spacesto be paved and the bike rackshall be inverted "U" design <br> - Shall be accessible via 6 ft. paved sidewalk | Bike racks are indic ated on the plan. <br> Proposed 5 ft . sidewalk | No | Provide 6 ft sidewalk. |
| Bicycle Parking Lot layout (Sec 5.16.6) | Parking space width: 6 ft . One tier width: 10 ft . Two tier width: 16 ft . Maneuvering lane width: 4 ft . <br> Parking space depth: 2 ft . single, $2^{1 / 2} \mathrm{ft}$. double | Bike rack details a re indic ated on the plan. | Yes |  |
| Loading Spaces <br> (Sec. 5.4.1) <br> Location of such <br> fac ilities in a permitted side yard shall be subject to review and approval by the City | Asneeded | No loading spaces indic ated. | No | Clarify if there is a need fordesignated loading and unloading area for deliveries and/ or pick-up/drop-off of students. |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Dumpster <br> (Sec 4.19.2.F) | - Located in rearyard or interior side yard in case of double frontage <br> - Attached to the building or <br> - No closer than 10 ft . from build ing if not attached <br> - Not located in parking setback <br> - If no setback, then it cannot be any closer than 10 ft , from property line. <br> - Away from Ba mier free Spaces | - Located in front yard, not attached to the build ing. | No | Deviations approved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |
| Dumpster Enclosure (Sec. 21-145.(c) City code of Ordinances) | - Screened from public view. <br> - A wall or fence 1 ft . higher than height of refuse bin. <br> - And no less than 5 ft . on three sides. <br> - Posts or bumpers to protect the screening. <br> - Hard surface pad. <br> - Screening Materials: Masonry, wood or evergreen shrubbery | Dumpster proposed. | No | Provide dumpster and enclosure details on plans. |
| Fences |  |  |  |  |
| Fence Location (Sec. 5.11.2.A) | No fence shall extend into a front or exterior side yard | Part of the fence extends into front yard along the proposed private drive | No | Deviations approved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |
| Fence Height (Sec. 5.11.2.B) | No fence shall exceed eight (8) feet in height Fences with barbed wire on top can exceed 11 feet | Maximum height is 6 ft . | Yes |  |
| Electrical Curent for Fences (Sec. 5.11.2.C) | No fence shall camy elec tric al current or charge of electricity. | This is protec tive fence fora daycare playarea. | Yes |  |
| Prohibited Materials. (Sec. 5.11.3.A) | This section refers to prohibited materials that cannot used for proposed fences | A semi-private 6 ft . vinyl fence is proposed along the building. <br> A 4 ft . chain link fence is proposed inside the enclosed play area. | Yes | Deviations approved as part of the PSLR Agreement at the 4-18-16 City Council meeting. |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Maintenance (Sec. 5.11.3.B) | All fences shall comply with applicable provisions of the current City of Novi Property Maintenance Code. |  | No | Please provide a note stating the requirement on the plans. |
| Uniformity (Sec. 5.11.3.C) | All fences shall be of uniform material(s), finish, and color along a property line of any parcel tota ling less than one-hundred fifty (150) feet in length. | The property line is longerthan 150 feet. | NA |  |
| Roof top Equipment Requirements |  |  |  |  |
| Roof top equipment and wall mounted utility equipment (Sec. 4.19.2.E.ii) | All roof top equipment must be screened and all wall mounted utility equipment must be enclosed and integrated into the design and color of the building | Rooftop equipment proposed. | Yes | Please provide a note stating the requirement on the plans. |
| Roof top appurtenances screening | Roof top appurtenances shall be screened in accordance with applicable facade regulations, and shall not be visible from any street, road oradjacent property. | Rooftop equipment is screened. | Yes |  |
| Sidewalk Requirements |  |  |  |  |
| ARICLEXI. OFROAD NONMOTORIED FACILITES <br> Sec. 11-256. <br> Requirement. <br> (c) \& Sub. Ord. <br> Sec. 4.05, | In the case of new streets and roadways to be constructed as part of the project, a sidewalk shall be provided on both sides of the proposed street orroadway. <br> Sidewa lks a long a rterials and collectors shall be 6 feet or 8 feet wide asdesignated by the "Bicycle and Pedestrian Plan," but not along industrial service streets per Subdivision Ordinance - Whereas sidewalks a long local streets and private roadways shall be five (5) feet wide. | An 8 ft . wide asphalt bike path is proposed along Beck Road. | Yes |  |
| Pedestrian Connectivity | - Whether the traffic c irculation features | The site plan has provision for future | No | Provide a sidewalk connection from in front of |


| Item | Required Code | Proposed | Meets Code | Comments |
| :---: | :---: | :---: | :---: | :---: |
|  | within the site and parking a reasare designed to assure safety and convenience of both vehicular and pedestrian traffic both within the site and in relation to access streets <br> - Building exits must be connected to sidewalk system or parking lot. | connection for pedestrian connectivity in some areas. |  | the building to the proposed sidewalk in the road right-of-way. |
| Other Requirements |  |  |  |  |
| Design and Construction Standards Manual | Land description, Sidwell number (metes and bounds for acreage parcel, lot number(s), Liber, and page for subdivisions). |  | Yes |  |
| General layout and dimension of proposed physical improvements | Location of all existing and proposed buildings, proposed building heights, building layouts, (floor area in square feet), location of proposed parking and parking layout, streets and drives, and indic ate square footage of pavement area (indicate public or private). |  | Yes |  |
| Economic Impact | - Total cost of the proposed building \& site improvements <br> - Number of anticipated jobscreated (during construction \& after building is occupied, if known) | Total cost of improvements exc eed \$3.0 Million. <br> The day care will have a pproximately 22 staff members. | Yes |  |
| Legal Documents | PSLR Development Agreement is required <br> Master Deed would be required for the ROW dedic ation with Final Site Plan review. | Draft agreement provided. | Yes <br> No | Final agreement was approved by the City Council on 4-18-2016. <br> Provide Master Deed and ROW dedication with Final Site Plan Submittal. |
| Development and Street Names | Development and street names must be approved by the Street | To be reviewed for name on 4/21/16. | Yes |  |


| Item | Required Code | Proposed | Meets <br> Code | Comments |
| :--- | :--- | :--- | :--- | :--- |
|  | Naming Committee <br> before Preliminary Site <br> Plan approval |  |  | A permit is still required. <br> Contact J eannie Niland |
| Development/ <br> Business Sign | - Signage if proposed <br> requires a permit. <br> - Exterior Signage is not <br> regulated by the <br> Planning Division or <br> Planning Commission. | 2 monument signs were <br> approved at the C ity <br> Council meeting on 4- <br> pernit information. |  |  |

## NOTES:

1. This table is a working summary chart and not intended to substitute for any Ordinance or City of Novi requirements or standards.
2. The section of the applicable ordinance or standard is indicated in parenthesis. Please refer to those sections in Artic le 3, 4 and 5 of the zoning ordinance for further details.
3. Please include a written response to a ny points requiring clarific ation or for any corresponding site plan modific ations to the City of Novi Planning Department with future submittals.


# PLAN REVIEW CENTER REPORT <br> 04/18/2016 

\author{

## Engineering Review

 <br> Everbrook/Learning Care Academy JSP 15-0057}

## Applicant

```
AMRO INVESTMENTS, LLC
```


## Review Type

Preliminary Site Plan

## Property Characteristics

- Site Location: N. of 11 Mile Rd. and W. of Beck Rd.
- Site Size: 4.15 acres
- Plan Date: 03/26/16


## Project Summary

- Construction of an approximately 11,844 square-foot building and associated parking. Site access would be provided by private road with two curb cuts onto Beck Rd.
- Water service would be provided by a 2 -inch domestic lead and a 6-inch fire lead from the existing 16 -inch water main on the east side of Beck Rd.
- Sanitary sewer service would be provided by 2 -inch domestic lead from the existing 18-inch sanitary sewer on the west side of Beck Rd.
- Storm water would be collected by a single storm sewer collection system and detained in an on-site detention pond.


## Recommendation

Approval of the Preliminary Site Plan and Preliminary Storm Water Management Plan is recommended.

## Comments:

The Preliminary Site Plan meets the general requirements of Chapter 11, the Storm Water Management Ordinance and the Engineering Design Manual with the following items to be addressed at the time of Final Site Plan submittal (further engineering detail will be required at the time of the final site plan submittal):

## Additional Comments (to be addressed prior to the Final Site Plan submittal):

## General

1. Provide a note on the plans that all work shall conform to the current City of Novi standards and specifications.
2. Revise the plan set to reference at least one city established benchmark. An interactive map of the City's established survey benchmarks can be found under the 'Map Gallery' tab on www. cityofnovi.org.
3. A right-of-way permit will be required from the City of Novi.
4. Plans must be signed and sealed by an engineer licensed in the State of Michigan.
5. The Non-domestic User Survey form shall be submitted to the City so it can be forwarded to Oakland County. This form was included in the original site plan package.
6. Provide a traffic control sign table listing the quantities of each sign type proposed for the development. Provide a note along with the table stating all traffic signage will comply with the current MMUTCD standards.
7. Generally, all proposed trees shall remain outside utility easements. Where proposed trees are required within a utility easement, the trees shall maintain a minimum 5 -foot horizontal separation distance from any existing or proposed utility. All utilities shall be shown on the landscape plan, or other appropriate sheet, to confirm the separation distance.
8. Provide a traffic control plan for the proposed road work activity (City roads).
9. Provide a construction materials table on the Utility Plan listing the quantity and material type for each utility (water, sanitary and storm) being proposed.
10. Provide a utility crossing table indicating that at least 18 -inch vertical clearance will be provided, or that additional bedding measures will be utilized at points of conflict where adequate clearance cannot be maintained.
11. Provide a note stating if dewatering is anticipated or encountered during construction a dewatering plan must be submitted to the Engineering Department for review.
12. Revise the sheet index to match the sheets provided.
13. The City standard detail sheets are not required for the Final Site Plan submittal. They will be required with the Stamping Set submittal. They can be found on the City website (www.cityofnovi.org/DesignManual).

## Water Main

14. Note that a tapping sleeve, valve and well will be provided at the connection to the existing water main.
15. Provide a profile for all proposed water main 8-inch and larger.

## Sanitary Sewer

16. Provide a sanitary sewer monitoring manhole, unique to this site, within a dedicated access easement or within the road right-of-way. If not in the right-of-way, provide a 20 -foot wide access easement to the monitoring manhole from the right-of-way (rather than a public sanitary sewer easement).
17. Provide a note on the Utility Plan stating the sanitary lead will be buried at least 5 feet deep where under the influence of pavement.

## Storm Sewer

18. Provide profiles for all proposed storm sewer 12-onches and larger.
19. A minimum cover depth of 3 feet shall be maintained over all storm sewers. Currently, a few pipe sections do not meet this standard. Grades shall be elevated and minimum pipe slopes shall be used to maximize the cover depth. In situations where the minimum cover cannot be achieved, Class $\vee$ pipe must be used with an absolute minimum cover depth of 2 feet. An explanation shall be provided where the cover depth cannot be provided.
20. Provide a 0.1 -foot drop in the downstream invert of all storm structures where a change in direction of 30 degrees or greater occurs.
21. Match the 0.80 diameter depth above invert for pipe size increases.
22. Storm manholes with differences in invert elevations exceeding two feet shall contain a 2 -foot deep plunge pool.
23. Provide a four-foot deep sump and an oil/gas separator in the last storm structure prior to discharge to the storm water basin.
24. Label all inlet storm structures on the profiles. Inlets are only permitted in paved areas and when followed by a catch basin within 50 feet.
25. Label the 10 -year HGL on the storm sewer profiles, and ensure the HGL remains at least 1 -foot below the rim of each structure.
26. Provide a schedule listing the casting type and other relevant information for each proposed storm structure on the utility plan. Round castings shall be provided on all catch basins except curb inlet structures.

## Storm Water Management Plan

27. The Storm Water Management Plan for this development shall be designed in accordance with the Storm Water Ordinance and Chapter 5 of the new Engineering Design Manual.
28. Provide an access easement for maintenance over the storm water detention system and the pretreatment structure. Also, include an access easement to the detention area from the public road right-of-way.
29. Provide release rate calculations for the three design storm events (first flush, bank full, 100-year).
30. Provide a soil boring in the vicinity of the storm water basin to determine soil conditions and to establish the high water elevation of the groundwater table.
31. Provide supporting calculations for the runoff coefficient determination.
32. A runoff coefficient of 0.35 shall be used for all turf grass lawns (mowed lawns).
33. Due to maintenance concerns, each restricting orifice in the control structure shall be a minimum of 1 square-inch in size, even though this may result in a flow rate above that calculated.
34. Provide storm calculations on plans or a reference to the Stormwater Report.

## Paving \& Grading

35. The right-of-way sidewalk shall continue through the drive approach. If like materials are used for each, the sidewalk shall be striped through the approach. The sidewalk shall be increased to 6-inches thick along the crossing or match the proposed cross-section if the approach is concrete. The thickness of the sidewalk shall be increased to 6 -inches across the drive approach. Provide additional spot grades as necessary to verify the maximum 2-percent cross-slope is maintained along the walk.
36. Curbing and walks adjacent to the end of 17-foot stalls shall be reduced to 4inches high, rather than the standard 6 -inch height to be provided adjacent to 19-foot stalls. Provide additional details as appropriate.
37. Provide the standard Type ' $M$ ' approach at the Beck Rd. driveway.

## The following must be submitted at the time of Final Site Plan submital:

38. A letter from either the applicant or the applicant's engineer must be submitted with the Final Site Plan highlighting the changes made to the plans addressing each of the comments listed above and indicating the revised sheets involved.
39. An itemized construction cost estimate must be submitted to the Community Development Department at the time of Final Site Plan submittal for the determination of plan review and construction inspection fees. This estimate should only include the civil site work and not any costs associated with construction of the building or any demolition work. The cost estimate must be ifemized for each utility (water, sanitary, storm sewer), on-site paving, right-of-way paving (including proposed right-of-way), grading, and the storm water basin (basin construction, control structure, pretreatment structure and restoration).

## The following must be submifted at the time of Stamping Set submittal:

40. A draft copy of the maintenance agreement for the storm water facilities, as outlined in the Storm Water Management Ordinance, must be submitted to
the Community Development Department with the Final Site Plan. Once the form of the agreement is approved, this agreement must be approved by City Council and shall be recorded in the office of the Oakland County Register of Deeds.
41. A draft copy of the 20 -foot wide easement for the sanitary sewer access to on the site must be submitted to the Community Development Department.
42. Executed copies of any required off-site utility easements must be submitted to the Community Development Department.

## The following must be addressed prior to construction:

43. A pre-construction meeting shall be required prior to any site work being started. Please contact Sarah Marchioni in the Community Development Department to setup a meeting (248-347-0430).
44. A City of Novi Grading Permit will be required prior to any grading on the site. This permit will be issued at the pre-construction meeting. Once determined, a grading permit fee must be paid to the City Treasurer's Office.
45. A Soil Erosion Control Permit must be obtained from the City of Novi. Contact Sarah Marchioni in the Community Development Department (248-347-0430) for forms and information.
46. A permit for work within the right-of-way of Beck Rd. must be obtained from the City of Novi. The application is available from the City Engineering Department and should be filed at the time of Final Site Plan submittal. Please contact the Engineering Department at 248-347-0454 for further information.
47. Construction Inspection Fees to be determined once the construction cost estimate is submitted must be paid prior to the pre-construction meeting.
48. A storm water performance guarantee, equal to 1.5 times the amount required to complete storm water management and facilities as specified in the Storm Water Management Ordinance, must be posted at the Treasurer's Office.
49. An incomplete site work performance guarantee for this development will be calculated (equal to 1.5 times the amount required to complete the site improvements, excluding the storm water facilities) as specified in the Performance Guarantee Ordinance. This guarantee will be posted prior to TCO, at which time it may be reduced based on percentage of construction completed.
50. A street sign financial guarantee in an amount to be determined ( $\$ 400$ per traffic control sign proposed) must be posted at the Treasurer's Office.

Please contact Jeremy Miller at (248) 735-5694 with any questions.

cc: Adam Wayne, Engineering
Brian Coburn, Engineering
Kirsten Mellem, Community Development
Sabrina Lilla, Water \& Sewer

## PLAN REVI EW CENTER REPORT

# April 19, 2016 <br> Preliminary Site Plan <br> Everbrook (Learning Care Academy) 

## Review Type

Preliminary Site Plan Landscape Review

Job \#
J SP15-0057

## Property Characteristics

- Site Location:

Northwest comer of Beck and 11 Mile Road

- Site Zoning:

R-3 with PSLR

- Adjacent Zoning: R-3 with PSLR
- Plan Date: 3/29/2016


## Ordinance Considerations

This project was reviewed for conformance with Chapter 37: Woodland Protection, Zoning Article 5.5 La ndscape Standards, the Landsc ape Design Manual and a ny other applic able provisions of the Zoning Ordinance. Items in bold below must be addressed and incomorated as part of the Preliminary Site Plan submittal. Underlined items should be addressed in Final Site Plans. Please follow guidelines of the Zoning Ordinance and Landsc ape Design Guidelines. This review is a summary and not intended to substitute for a ny Ordinance.

## Recommendation:

This project is recommended for approval with the understanding that the items listed below and on the attached Landscape Chart will be addressed satisfactorily in the Preliminary and Final Site Plans.

## Existing Soils (Prelimina ry Site Plan chec klist \#10, \#17)

Soils information is provided on the Landscape Plans.
Existing and proposed overhead and underground utilities, including hydrants.(LDM 2.e.(4)) Existing and proposed utilities provided.

Existing Trees (Sec 37 Woodland Protection, Preliminary Site Plan checklist \#17 and LDM 2.3 (2)) The only existing treesindicated on the plansare those in the woodland along the west edge of the property. They are shown as being preserved.

## Residential adjacent to Non-Residential Screening (Zoning Sec. 5.5.3., Zoning Sec.3.21.2.A)

## North property line

1. The proposed berm height meets the minimum height requirement ( $\min 4.5^{\prime} \max 6$ '). If possible, more vertic al variation above the minimum height should be added.
2. The combination of large and small evergreen trees and deciduous trees should provide the required screening for the property to the north.
3. Varieties of Red Maple with a broader crown (at least $20^{\prime}$ ) than Armstrong Maple should be used to provide better screening. (All required deciduous canopy trees should have a mature canopy of at least 20' - please replace na rower trees with varieties that provide the required canopy).

## South property line.

1. The PRO agreement for the property allows no bem along the south property line.
2. The PRO agreement also allows the absence of screening to provide $80-90 \%$ opacity along the south property line.

## West Property Line

The existing woods being preserved along the west property line provides sufficient screening so no additional berms or landscaping is required.

## Adjacent to Public Rights-of-Way - Berm (Wall) \& Buffer (Zoning Sec. 5.5.3.B.ii and iii, Zoning

 Section 3.21.2.A)1. Please add more vertical variation (above the required minimum) to the berm along Beck Road.
2. Please also provide the required greenbelt landscaping for the $\mathbf{2 6 0}$ If of frontage along the new public road south of the building. 7 large evergreen or deciduous canopy trees and $\mathbf{1 3}$ subcanopy trees between the road and the building are required. If desired, the required plantings can be spread along the entire building frontage, not just that portion of the building facing the road. As the PRO does not require full screening along the south property line, some of the perimeter trees could be moved to senve as greenbelt trees.

Street Tree Requirements (Zoning Sec. 5.5.3.E.i.c and LDM 1.d.)

## Beck Road

Based on the 333.75 If of frontage, less the 60 nght-of-way for the new, public access road, eight (8) deciduous canopy trees are required in the greenspace between the sidewalk and Beck Road. In place of these, 16 subcanopy trees are proposed due to the overhead wires. This is acceptable.

## Access Road

1. Street trees should be placed on both sides of the access road at 1 deciduous canopy tree per 35 If for the entire length of the cul-de-sac. For $2601 f$ of frontage, 7 trees are required on each side of the road. 12 trees are provided ("perimeter" trees along road can be counted as street trees).
2. Please provide $\mathbf{2}$ more street trees along the north side of the road.

## Parking Lot Landscape (Zoning Sec. 5.5.3.C.)

1. The number of required parking lot trees is 21 . Only 8 have been provided, which is less than the number agreed to in the PRO. Please provide at least $\mathbf{2}$ more to conform with the PRO. The underground sanitary and electric lines can be shifted to the east to provide sufficient room for 2 trees in the two open areas at the west of the parking lot
2. Islands need to have a tree planted in them to count toward the requirement See \#1 of this section.
3. Please use varieties of deciduous canopy trees with a mature canopy of at least 20 feet

## Parking Lot Perimeter Canopy Trees (Zoning Sec. 5.5.3.C.(3) Chart footnote)

1. The perimeter of the parking lot is $\mathbf{5 3 5}$ If, not $\mathbf{2 5 2}$ If. This would result in $\mathbf{1 5}$ perimeter trees. While all 15 may not fit, please revise the calculations and add as many as possible.
2. Please move perimeter trees to within $\mathbf{1 0}^{\prime}$ of the parking lot

Transformer/ Utility Box Screening (Zoning Sec 5.5.3.D.) Provided

Building Foundation Landsc ape (Zoning Sec 5.5.3.D.)
Provided.
Plant List (LDM 2.h. and t.)
Provided.

## Planting Notations and Details (LDM)

Provided.

## Storm Basin Landscape (Zoning Sec 5.5.3.E.iv and LDM 1.d.(3)

1. Provided.
2. Hamamelis $x$ intermedia is not native to Michigan. It is a cross between two Asian species. Hamamelis virginiana is native to Michigan, but should not be used in the detention pond as it is a woods plant that doesn't do well in full sun. Please select another native shrub. Possibilities are Aronia melanocarpa, Comus sericea, Comus amomum, Physoc arpus opulifolius, Sambuc us canadensis and llex verticillata.

Imigation (LDM 1.a.(1)(e) and 2.s)
Irgation plan for landscaped a reas is required for Final Site Plan.
Proposed topography. 2' contour minimum (LDM 2.e.(1))
Provided for berms and parking areas.
Snow Deposit (LDM.2.q.)
Provided at north end of parking lot.
Proposed treesto be saved (Sec 37 Woodland Protection 37-9, LDM 2.e.(1))
No trees are proposed to be removed.

## Comer Clearance (Zoning Sec 5.9)

Please show comer clearance triangles at entry points to access road and move tree just west of it out of triangle.

If the applicant has any questions conceming the above review or the process in general, do not hesita te to contact me at 248.735 .5621 or meader meader@cityofnovi.org.


Rick Meader-Landscape Architect

## Memorandum

| To | Barbara McBeth, AICP Page 1 |
| :---: | :---: |
| cc | Kirsten Mellem |
| Subject | JSP 15-0057 - Everbrook Academy - Preliminary Site Plan - Traffic Review |
| From | Matt Klawon, PE |
| Date | April 28, 2016 |

The preliminary site plan was reviewed to the level of detail provided and AECOM recommends approval for the applicant to move forward with the condition that the comments provided below are adequately addressed to the satisfaction of the City.

## GENERAL COMMENTS

1. The applicant, ICAP Development, is proposing to construct Everbrook Academy, formerly know as Learning Care Academy, on the west side of Beck Road, north of 11 Mile Road.
2. Beck Road is under City of Novi jurisdiction.
3. The proposed property consists of an 11,844 sqaure feet ( sq ft ) ( 7,540 usable sq ft ) child care facility to serve a maximum of 138 children with up to 22 staff members.

## TRAFFIC IMPACTS

1. AECOM performed an initial trip generation estimate based on the ITE Trip Generation Manual, $8^{\text {th }}$ Edition, as follows:

ITE Code: 565 - Day Care Center
Development-specific Quantity: 138 (students)
Zoning Change: N/A

|  | City of <br> Novi <br> Threshold | Estimated Trips <br> (Permitted <br> under existing <br> zoning) | Estimated Trips <br> (Permitted <br> under <br> proposed <br> zoning) | Proposed <br> Development | Analysis |
| :--- | :---: | :---: | :---: | :---: | :---: |
| AM Peak- <br> Hour, <br> Peak- <br> Direction <br> Trips$\quad 100$ | N/A | N/A | 58 |  |  |


| PM Peak- <br> Hour, <br> Peak- | 100 | N/A | N/A | 59 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Direction |  |  |  |  |  |
| Trips |  |  |  |  |  |
| Daily (One- <br> Directional) <br> Trips | 750 | N/A | N/A | 627 |  |

2. The number of trips does not exceed the City's threshold of more than 750 trips per day or 100 peak direction trips per either the AM or PM peak hour. AECOM recommends performing the following traffic impact study in accordance with the City's requirements:

| Type of Study | Trafific Impact Study |
| :--- | :--- |
| Recommendation |  |
| None | Justification |
|  | Not warranted; however, a full traffic <br> impact study was provided and has been <br> reviewed. Comments can be found under <br> a separate letter. |

## EXTERNAL SITE ACCESS AND OPERATIONS

The following comments relate to the external interface between the proposed development and the surrounding roadway(s).

1. Please indicate the sight distances at both Beck Road interfaces.
2. Based on anticipated volumes presented in the Traffic Impact Study (TIS), a southbound right turn taper is warranted. The taper is only designed to be $40^{\prime}$, while the City Ordinance generally recommends a standard length of $100^{\prime}$, with an acceptable range of $75^{\prime}$ to $100^{\prime}$. It is recommended that the applicant increase the length of the taper to a minimum of 75 ' since a 100 ' taper does not appear to be feasible due to the location of the northern property border. The purpose of the increased taper length is to provide enough distance for right-turning vehicles to decelerate to an appropriate turning speed while reducing the impact on southbound through traffic.
3. The driveway spacing requirements are generally in compliance with City standards.
4. The number of access points provided for the site is adequate.
5. The applicant has provided a vehicle connection point along the northern property line for connection to future adjacent developments.
a. The proposed driveway has been constructed with 5 ' entering and exiting radii, which is in compliance with City standards for field entrances.
b. Due to the potential for traffic to use this driveway in the future, the applicant could consider increasing the entering and exiting radii to a minimum of 15 ' to align with City Ordinance requirements for a typical driveway.

## INTERNAL SITE OPERATIONS

The following comments relate to the on-site design and traffic flow operations.

1. General traffic flow
a. The site plan indicates a "bus drop-off" location; however, the feasibility of a bus accessing the designated area may be difficult without blocking travel lanes and/or parking spaces. The applicant should provide circulation patterns indicating the anticipated bus on-site operations for further review.
b. The site plan does not indicate a designated loading zone.
c. The dumpster is located in an area that should not cause unrelated interferences with other on-site traffic.
2. Parking facilities
a. The number of parking spaces provided meets the minimum requirement as indicated in the City Zoning Ordinance.
b. Parking spaces are in compliance with City standards.
i. The applicant could consider increasing the amount of landscape space on the site by reducing the length of the parking spaces along the northern and eastern sides of the property. To remain in compliance with City standards, the applicant may:
3. Reduce the parking space length from 19' to 17', AND
4. Reduce the adjacent curb height to 4".
c. The handicap parking spaces are adequate in terms of quantity and design. The applicant could consider adjusting the placement of the handicap signs to be more directly in front of the parking spaces which they are reserving.
d. Please indicate the length of the end islands throughout the site. City standards require the end islands to be 3 ' shorter than the adjacent parking space.
e. The bicycle parking facilities provided are adequate.
5. The roadway/aisle widths are in compliance with City standards.
6. Sidewalk Requirements
a. The proposed sidewalks adjacent to the facility are in compliance with standards.
b. The proposed sidewalk along Beck Road is in compliance with standards.
7. All on-site signing and pavement markings shall be in compliance with the Michigan Manual on Uniform Traffic Control Devices. The following is a discussion of the proposed signing.
a. The applicant should consider the installation of a standard "End of Road" sign (W14-1, W14-1a, W14-2, or W14-2a) at the end of the proposed temporary Tturnaround along the south property line.

Should the City or applicant have questions regarding this review, they should contact AECOM for further clarification.

Sincerely,


Maureen Peters, PE Reviewer


Matthew G. Klawon, PE
Manager, Traffic Engineering and ITS
Engineering Services

## Memorandum

| To | Barbara McBeth, AICP | Page | 1 |
| :---: | :---: | :---: | :---: |
| CC | Kirsten Mellem |  |  |
| Subject | JSP 15-0057 - Everbrook Academy - Traffic Impact Study Review |  |  |


| From | Matt Klawon, PE |
| :--- | :--- |
| Date | April 14, 2016 |

The traffic impact study (TIS) was reviewed to the level of detail provided and AECOM recommends approval for the applicant to move forward with the condition that the comments provided below are adequately addressed to the satisfaction of the City.

## GENERAL TIS COMMENTS

All comments have been indicated on the attached TIS, and most critical comments are included herein.

1. The existing southbound average annualized daily traffic volume presented in the TIS is not correct based on the traffic counts included in Appendix B and the Southeast Michigan Council of Governments (SEMCOG) Seasonal Factor Table for 2014.
a. Southbound 24 -hour count total $=9,230$ vehicles
b. Seasonal Factor for a Tuesday in December $2014=.956$
c. 9,230 * $0.956=8,824$ vehicles
2. Analysis was performed for two separate scenarios: (1) Phase I - build year 2016 with an estimated 100 student enrollment and (2) Phase II - build year 2019 with an expanded building and estimated 131 student enrollment. Table 1 displays the trip generation information for each scenario, as depicted in the TIS.
a. The daily trips were calculated using the average rate, not the equation provided in the Trip Generation Manual. According to the manual, this scenario warrants use of the equation. The daily trip values should be updated to 446 and 594 for Phase I and Phase II, respectively.
b. The TIS states that, under Phase II conditions, the site will exceed the City's thresholds for peak hour trips. While the site generates more than 100 trips per peak period, the City's thresholds are for peak hour, peak direction trips; therefore, the site does not exceed City thresholds. This statement should be revised in the TIS to reflect accutate City standards.

## AECOM

Table 1. Trip Generation Summary

3. The TIS includes level of service (LOS) results for an optimized conditions scenario for each build year 2016 and build year 2019. The values presented in Tables 8 and 9 of the TIS could not be verified as the Synchro reports are not included in the Appendix. It is not critical to examine the Synchro reports for purposes of this review, as the optimized conditions results are similar to the "Future" condition results.
4. Right Lane Warrant
a. Please provide the source of the 2-way 24 -hour volumes used for the right lane warrant analysis.
b. A right-turn lane taper is warranted along southbound Beck Road at the northern site driveway. Due to right-of-way limitations, a taper of $40^{\prime}$ can be included, which is less than the standard $100^{\prime}$ taper (range of $75^{\prime}-100^{\prime}$ ) indicated in the City Ordinance.
5. In the Access Management section of the TIS, the driveway spacing states that distances from centerline of the driveway to the Beck Road is 230 feet. The City Ordinance measures driveway spacing from the near curb to near curb of the two driveways/roadways. The TIS could be updated to reflect the accurate measurement using the City's preferred methodology.
6. The Beck Road southbound thru "site generated" volume at 11 Mile Road shown on Sheet 3 of Appendix E should be changed from 12 to 16 to display accurate distribution of the total site-generated traffic. The correct value of 19 was used in the Synchro models and there is not a need to reevaluate the impacts.

In general, the results of the TIS indicate that the site is not expected to have negative impacts on the adjacent roadway. Should the City or applicant have questions regarding this review, they should contact AECOM for further clarification.

Sincerely,

## AECOM



Maureen Peters, PE
Reviewer


Matthew G. Klawon, PE
Manager, Traffic Engineering and ITS Engineering Services


PRINCIPALS
George E. Hubbell Thomas E. Biehl Walter H. Alix Kelth D. McCormack Nancy M. O. Faught Daniel W. Mitchell Jesse B. VanDeCreek Roland N. Alix

## SENIORASSOCIATES

Gary J. Tressel Kenneth A. Melchior RandalL. Ford William R. Davis Dennis J. Benolt Robert F. Defrain Thomas D. LaCross Albert P. Mickalich Timothy H. Sullivan

ASSOCIATES
Jonathan E. Booth Michael C. MacDonald Marvin A. Olane Marshall J. Graziol James F. Burton Donna M. Martin Charles E.Hart Colleen L. Hill-Stramsak Bradley W. Shepler Karyn M. Stickel

HUBRELL, ROTH品 CLARK, INC. OFFICE: 555 Hulet Drive Bloomfield Hills, MI 48302-0360 MAlLING: PO Box 824 Bloomfield Hills, M1 48303-0824 PHONE: 248.454.6300 FAX: 248.454.6312
WEBSTE: www hre-engr.com
EMALL: info@hrc-engr.com

January 6, 2016
ICAP Development LLC
1243 N. $10^{\text {th }}$ Street, Suite 300
Milwaukee, Wisconsin 53202
Attn: Mr. Brian Adamson

Re: Learning Care Group Traffic Impact Study Novi, Michigan

Dear Mr. Adamson:

At your request, Hubbell, Roth \& Clark, Inc. (HRC) prepared a traffic impact study for the proposed Learning Care Group development in the City of Novi, Michigan. The site plan is shown in Attachment $\mathbf{A}$. The site plan indicates that the initial school size will be 11,844 square feet with a possible future expansion to 14,682 square feet. To meet the requirements of the City of Novi, HRC completed the following tasks:

- Confirmed our scope of services with Novi's traffic engineer, AECOM.
- Provided a description of the adjacent roadway system.
- Collected 24 hour, 2-way vehicle counts on Beck Road, north of 11 Mile.
- Collected turning movement counts from 7:00 AM - 9:00 AM and 2:00 PM 6:00 PM at the signalized intersection of Beck and 11 Mile Roads.
- Forecasted background growth based on two build out dates.
- Estimated the trips generated by the proposed land use and future expansion using the techniques in the Institute of Transportation Engineer's Trip Generation Manual.
- Distributed and assigned the site generated trips to the adjacent roadway network.
- Conducted a capacity analyses for existing, background, and future conditions for the AM and PM peak hours using Synchro 9 software at the signalized intersection of Beck and 11 Mile Roads using the techniques outlined in the Transportation Research Board Highway Capacity Manual.
- Determined if site plan meets access management policies adopted by the City of Novi.
- Determined any road improvements necessary to mitigate the impact of additional traffic on the adjacent roadway system.
- Conducted a turning lane warrant study to determine if a taper and/or turning lane are required at the site driveways.
- Prepared a letter report with our findings and recommendations.

Brian Adamson
January 6, 2016
HRC Job Number 20150884
Page 2 of 12

## Existing Roadway System

The site the Learning Care Group development is located on Beck Road the north of 11 Mile Road. Access to the site will be from a private driveway and future public street. The site location is shown in Figure 1.


Figure 1. Location Map
Beck Road is a 2-lane road with a continuous center left-turn lane and a posted speed of 45 mph . Beck Road is classified an Urban Minor Arterial and is under the jurisdiction of the City of Novi. The site is approximately 250 feet north of 11 Mile Road and 0.25 mile south of an entrance to St. John Providence Hospital. There is a dedicated right turn lane ( 210 feet in length) on southbound Beck and a dedicated right turn lane ( 170 feet in length) on northbound Beck at 11 Mile Road. The traffic signals are on a diagonal span wire with low level left turn signals. Eleven Mile Road is a 2-lane road with a posted speed of 30 mph . This road is classified a Major Collector and is under the jurisdiction of the City of Novi. There is a dedicated left turn lane ( 210 feet in length) on eastbound and westbound 11 Mile Road at Beck Road. The intersection of Beck Road and 11 Mile Road is signalized and on the FAST-TRAC system. Beck Road has paved and gravel shoulders and ditches.

## Existing Traffic Volumes

HRC collected 24-hour counts on Beck Road on Tuesday, 12/1/2015. Using SEMCOG's Seasonal Factor Table for 2014, the Average Annualized Daily Traffic on Beck Road is 9,856 vehicles northbound and 8,925 vehicles southbound. The 24 hour count data is provided in Attachment B.

Turning movement counts were taken by HRC at the intersection of Beck Road and 11 Mile Road on

January 6, 2016
HRC Job Number 20150884
Page 3 of 12

Tuesday, 12/1/2015. Counts were collected for six hours from 7:00-9:00 AM and from 2:00-6:00 PM. The AM peak hour is 7:15-8:15 AM and the PM peak hour is $5: 00-6: 00$ PM. Table 1 summarizes the peak hour turning movement counts. The complete turning movement counts are provided in Attachment $\mathbf{C}$.

Table 1. Turning Movement Counts at Beck \& $\mathbf{1 1}$ Mile

| Approach | Movement | AM Peak | PM Peak |
| :---: | :--- | :---: | :---: |
| 11 Mile <br> Eastbound | LT | 54 | 18 |
|  | TH | 113 | 49 |
|  | RT | 73 | 31 |
|  | Total | 240 | 98 |
| Westbound | LT | 21 | 29 |
|  | TH | 85 | 58 |
|  | RT | 58 | 44 |
|  | Total | 164 | 131 |
| Beck Road <br> Northbound | LT | 84 | 32 |
|  | TH | 728 | 641 |
|  | RT | 40 | 26 |
|  | Total | 852 | 699 |
| Beck Road <br> Southbound | LT | 33 | 55 |
|  | TH | 442 | 809 |
|  | RT | 57 | 24 |
|  | Total | 532 | $\mathbf{8 8 8}$ |
| TOTAL |  | $\mathbf{1 7 8 8}$ | $\mathbf{1 8 1 6}$ |

## Background Traffic Growth

The initial development is projected to be ready for occupancy by the end of 2016. The expansion is projected to be ready for occupancy by the end of 2019.

HRC proposes to use a growth rate of $1 \%$ per year for this study. This assumption was based on historic AADT data and annual growth trends provided by RCOC in the general area. Table 2 shows that the annual rates vary. An average is difficult to estimate so in order to be conservative, a small growth rate was used.

Table 2. Annual Growth Trend in Study Area

| Approach | $\mathbf{2 0 0 5 - 2 0 0 8}$ | $\mathbf{2 0 0 8 - 2 0 1 0}$ | $\mathbf{2 0 1 0 - 2 0 1 2}$ |
| :--- | :---: | :---: | :---: |
| NB Beck | $6 \%$ | $-1 \%$ | $-5 \%$ |
| SB Beck | $20 \%$ | $2 \%$ | $0 \%$ |
| EB 10 Mile | $-1 \%$ | $2 \%$ | $-3 \%$ |
| WB 10 Mile | $3 \%$ | $10 \%$ | $-9 \%$ |

Brian Adamson
January 6, 2016
HRC Job Number 20150884
Page 4 of 12

## Trip Generation

One of the most critical elements of a traffic study is estimating the amount of traffic to be generated by a proposed development. This is usually done by using trip generation rates or equations to provide an estimate of all future trips generated by a proposed development.

Rates are commonly expressed in trips per unit of development. For example, trips per dwelling unit are commonly used for residential developments, while trips per 1,000 square feet of gross floor area are used for offices and retail. Equations provide a direct estimate of trips based upon development units being multiplied in a mathematical relationship.

Trips are defined as a single or one directional movement with either the origin or destination of the trip inside the study site. Thus, a car entering and leaving a site would be recorded as generating two trips. Trip generation estimates are often the most critical factors in assessing impacts and needs of a proposed development.

There are several sources for trip generation rates and equations, which are based on data collected from locations in the United States and Canada. These are compilations of data that have been gathered over many years for various land uses. National data sources are starting points in estimating the amount of traffic that may be generated by a specific building or land use. Whenever possible, the National rates should be adjusted to reflect local or forecasted conditions. These National sources are not intended to be used without question, deviation or sound judgment. They often reflect what are supposed to be the average or typical conditions. Data collected from local sites may be more representative than National averages of other developments within the area.

The most widely used source of national trip generation data is the Trip Generation Manual, published by the Institute of Transportation Engineers (ITE). The information in this report is almost solely derived from suburban and urban sites. Data included in trip generation was obtained from actual driveway counts of vehicular traffic entering and exiting the site. The eighth edition contains more than 4,800 data sets from individual trip generation studies. The report also includes discussions on the application and use of trip generation rates and equations; descriptions of the characteristics of each land use; maximum/minimum average rates for weekdays, weekends and peak hours of the generator and adjacent street traffic; and additional statistical data regarding data variability.

The client provided HRC with an average of daily trips generated from a survey of 809 schools for one week. The summary is provided in Attachment $\mathbf{D}$ and indicates total number of enrolled students and employees. The client clarified that student enrollment is always less then student capacity. A school with a capacity of 130 children typically has 100 enrolled students. In the future, when the school is expanded there will be a capacity for 170 students but enrollment is typically 131 students. The empirical data corresponds to ITE Land Use Code 565, Day Care Center, when the variable is the number of students. When the variable is employees or gross floor area, the trip generation projections are excessive. Table 3 compares the trip generation based on ITE Land Use Code 565 for the initial school and for the future school.

Brian Adamson
January 6, 2016
HRC Job Number 20150884
Page 5 of 12

Table 3: Trip Generation for Children's LCG School Site

| Scenario | ITE <br> Code | ITE Land <br> Use <br> Description | Variable | No. of <br> Units | Daily <br> Trips | AM Peak <br> Hour Trips |  | PM Peak <br> Hour Trips |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase I | 565 | Day Care <br> Center | Students | 100 | 438 | 42 | 38 | 38 | 43 |
| Phase II | 565 | Day Care <br> Center | Students | 131 | 574 | 56 | 49 | 50 | 56 |

It was noted that the site development traffic volumes do not exceed Novi's threshold of 100 peak hour trips until Phase II is constructed. If Phase II is constructed then both the AM and PM peak will have trip generation volumes above 100 .

## Trip Distribution and Assignment

Traffic expected to be generated by a project must be distributed and assigned to the roadway system so that the impacts of the proposed project on roadway links and intersections within the study area can be analyzed. After an estimate of the total traffic into and out of the site has been made, that traffic must be distributed and assigned to the roadway system. The trip distribution step produces estimates of trip origins and destinations. The assignment step produces estimates of the amount of site traffic that will use certain access routes between their origin and destination.

The proposed site plan shows two driveways, driveway \#1 is directly on Beck Road in the northeast corner of the site and driveway \#2 goes to a proposed private road in the southeast corner of the site. Both driveways provide for 2 -way travel. In order to model the worst case scenario, HRC assumed that all trips would access the site using only driveway \#1 to the north.

The trips expected to be generated by the development were then assigned to the road. Trips were distributed first based on the directional split of traffic at the driveway on Beck during the peak hours studied. Then the trips to and from the south were assigned based on the directional split at the intersection of Beck and 11 Mile Road. Table 4 shows the how the trips were assigned to road network.

Table 4: Traffic Split Based on Volumes on Beck Road and Beck \& 11 Mile Intersection

| Direction | AM Peak Hour |  | PM Peak Hour |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Inbound | Outbound | Inbound | Outbound |
| North | $39 \%$ | $61 \%$ | $56 \%$ | $44 \%$ |
| South | $53 \%$ | $32 \%$ | $40 \%$ | $51 \%$ |
| East | $4 \%$ | $3 \%$ | $3 \%$ | $3 \%$ |
| West | $4 \%$ | $4 \%$ | $1 \%$ | $2 \%$ |
| Total | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ |

Overall trip assignment for the AM and PM peak hours are shown in the four figures provided in Attachment E. Based on the number of assigned trips, the impact from the development on the signalized intersection at Beck \& 11 Mile Roads is $3 \%$ of the intersection volumes, below the industry practice to study intersections that the development is adding $5 \%$ or more to the intersection.

## Capacity Analysis at Intersection

At signalized intersections, the Highway Capacity Manual (HCM) defines level of service in terms of control delay. Delay may be measured in the field, or it may be estimated. Delay is a complex measure, and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the volume to capacity ratio for the lane group or approach in question. Table 5 indicates the control delay criteria used for determining level of service (LOS) for signalized intersections.

Table 5: Level of Service Criteria for Signalized Intersections

| Level of Service | Control Delay per Vehicle (Seconds) |
| :---: | :---: |
| A | $<10$ |
| B | $>10$ to $\leq 20$ |
| C | $>20$ to $\leq 35$ |
| D | $>35$ to $\leq 55$ |
| E | $>55$ to $\leq 80$ |
| F | $>80$ |

Level of Service $A$ describes operations with very low control delay up to 10.0 sec per vehicle. This occurs when progression is exceptionally favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.

Level of Service $B$ describes operations with control delay in the range of 10.1 to 20.0 sec per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for Level of Service A, causing higher levels of average delay.

Level of Service $C$ describes operations with control delay in the range of 20.1 to 35.0 sec per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.

Level of Service $D$ describes operations with control delay in the range of 35.1 to 55.0 sec per vehicle. At level D , the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume to capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

Level of Service $E$ describes operations with control delay in the range of 55.1 to 80.0 sec per vehicle. This is considered to be above the limit of acceptable delay for an urban roadway in the study area. These

Brian Adamson
January 6, 2016
HRC Job Number 20150884
Page 7 of 12
high delay values generally indicate poor progression, long cycle lengths, and high volume to capacity ratios. Individual cycle failures are frequent occurrences.

Level of Service $F$ describes operations with control delay in excess of 80.1 sec per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with over saturation, i.e., when arrival flow rates exceed the capacity of the intersection. It may also occur at high volume to capacity ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

A capacity analysis was conducted at the intersection of Beck Road and 11 Mile Road using Synchro 9 software during the AM and PM peak hours for existing, background, and future traffic volumes. Table 6 and Table 7 show the growth in volume for each movement used in the traffic model for Phase I and Phase II, respectively. .

Table 6: Growth in Turning Movement Counts at Beck \& 11 Mile Roads - Phase I (2016)

| Peak <br> Hour | Scenario | SB Beek |  |  | WB 11 Mile |  |  | NB Beck |  |  | EB 11 Mile |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LT | TH | RT |  |
| AM | Existing | 33 | 442 | 57 | 21 | 85 | 58 | 84 | 728 | 40 | 54 | 113 | 73 | 1788 |
|  | Background | 0 | 4 | 1 | 0 | 1 | 1 | 1 | 7 | 0 | 1 | 1 | 1 | 18 |
|  | Future | 1 | 12 | 2 | 0 | 0 | 2 | 0 | 23 | 0 | 1 | 0 | 0 | 41 |
|  | Total | 34 | 458 | 60 | 21 | 86 | 61 | 85 | 758 | 40 | 56 | 114 | 74 | 1847 |
| PM | Existing | 55 | 809 | 24 | 29 | 58 | 44 | 32 | 641 | 26 | 18 | 49 | 31 | 1816 |
|  | Background | 1 | 8 | 0 | 0 | 1 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 16 |
|  | Future | 1 | 22 | 1 | 0 | 0 | 1 | 0 | 16 | 0 | 0 | 0 | 0 | 41 |
|  | Total | 57 | 839 | 25 | 29 | 59 | 45 | 32 | 663 | 26 | 18 | 49 | 31 | 1873 |

Table 7: Growth in Turning Movement Counts at Beck \& 11 Mile Roads - Phase II (2019)

| Peak <br> Hour | Scenario | SB Beck |  |  | WB 11 Mile |  |  | NB Beck |  |  | EB 11 Mile |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LT | TH | RT |  |
| AM | Existing | 33 | 442 | 57 | 21 | 85 | 58 | 84 | 728 | 40 | 54 | 113 | 73 | 1788 |
|  | Background | 1 | 18 | 2 | 1 | 3 | 2 | 3 | 29 | 2 | 2 | 5 | 3 | 71 |
|  | Future | 1 | 16 | 2 | 0 | 0 | 3 | 0 | 29 | 0 | 2 | 0 | 0 | 53 |
|  | Total | 35 | 476 | 61 | 22 | 88 | 63 | 87 | 786 | 42 | 58 | 118 | 76 | 1912 |
| PMI | Existing | 55 | 809 | 24 | 29 | 58 | 44 | 32 | 641 | 26 | 18 | 49 | 31 | 1816 |
|  | Background | 2 | 32 | 1 | 1 | 2 | 2 | 1 | 26 | 1 | 1 | 2 | 1 | 72 |
|  | Future | 2 | 28 | 1 | 0 | 0 | 1 | 0 | 20 | 0 | 1 | 0 | 0 | 53 |
|  | Total | 59 | 869 | 26 | 30 | 60 | 47 | 33 | 687 | 27 | 20 | 51 | 32 | 1941 |

Results of the capacity analysis of existing, background, and future traffic volumes at the intersection of

January 6, 2016
HRC Job Number 20150884
Page 8 of 12

Beck and 11 Mile Roads during the AM and PM peak hours are provided in Table 8 and Table 9. The movements with a LOS E or LOS F are highlighted. During the PM peak hour, 11 Mile Road experiences unacceptable levels of service. HRC optimized the split timings to demonstrate that acceptable levels of service were possible on all approaches and better represent how the actuated signal operates. Because the actuated signal operates on RCOC's FAST-TRAC system, it is continually updating signal splits, thus optimizing the signal performance. The Synchro reports are provided in Attachment $F$.

Table 8: Level of Service Results by Scenario and Peak Hour - Phase I (2016)

| Peak Hour | Approach | Existing |  | $\begin{gathered} \text { Background } \\ (2016) \end{gathered}$ |  | $\begin{aligned} & \text { Future } \\ & (2016) \\ & \hline \end{aligned}$ |  | Optimized Splits <br> - Future (2016) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS | Delay sec/veh |
| AM | EB | D | 50.1 | D | 50.2 | D | 50.2 | D | 46.9 |
|  | WB | D | 52.1 | D | 52.1 | D | 52.1 | D | 48.8 |
|  | NB | B | 18.0 | B | 18.3 | B | 19.1 | C | 20.1 |
|  | SB | B | 13.1 | B | 13.3 | B | 13.5 | B | 14.0 |
|  | Overall | C | 24.0 | C | 24.2 | C | 24.5 | C | 24.4 |
| PM | EB | E | 56.7 | E | 56.7 | E | 56.8 | D | 53.5 |
|  | WB | E | 55.8 | E | 55.8 | E | 55.9 | D | 52.5 |
|  | NB | B | 12.1 | B | 12.2 | B | 12.6 | B | 13.1 |
|  | SB | B | 15.1 | B | 15.3 | B | 16.1 | B | 16.9 |
|  | Overall | B | 19.1 | B | 19.3 | B | 19.7 | B | 19.9 |

Table 9: Level of Service Results by Scenario and Peak Hour - Phase II (2019)

| Peak <br> Hour | Approach | Existing |  | $\begin{gathered} \hline \text { Background } \\ (2019) \end{gathered}$ |  | $\begin{aligned} & \text { Future } \\ & (2019) \end{aligned}$ |  | Optimized Splits <br> - Future (2019) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS | Delay sec/veh |
| AM | EB | D | 50.1 | D | 50.2 | D | 50.3 | D | 47.0 |
|  | WB | D | 52.1 | D | 52.3 | D | 52.2 | D | 48.9 |
|  | NB | B | 18.0 | B | 19.5 | C | 20.6 | C | 21.8 |
|  | SB | B | 13.1 | B | 13.8 | B | 14.1 | B | 14.6 |
|  | Overall | C | 24.0 | C | 24.9 | C | 25.4 | C | 25.4 |
| PM | EB | E | 56.7 | E | 56.9 | E | 56.9 | D | 53.6 |
|  | WB | E | 55.8 | E | 55.9 | E | 56.0 | D | 52.6 |
|  | NB | B | 12.1 | B | 12.7 | B | 13.2 | B | 13.8 |
|  | SB | B | 15.1 | B | 16.3 | B | 17.3 | B | 18.3 |
|  | Overall | B | 19.1 | B | 20.0 | C | 20.6 | C | 20.8 |

## Capacity Analysis at Driveway

HRC conducted a capacity analysis at Driveway \#1 using Synchro 9 software. The intersections were analyzed following the procedures for unsignalized intersections as outlined in the 2010 Highway Capacity Manual.

At an un-signalized intersection with stop control on the minor approach (two way stop controlled intersections), LOS " $F$ " occurs when there are not enough gaps of suitable size to allow a minor-street demand to safely cross through traffic on the major street. This is typically evident from extremely long control delays experienced by minor street traffic and by queuing on the minor approaches. LOS " F " may also appear in the form of drivers on the minor street selecting smaller than usual gaps. In such cases, safety may be a problem, and some disruption to the major traffic stream may result. Note that LOS "F" may not always result in long queues but in adjustments to normal gap acceptance behavior, for example a left turning vehicle using a shorter than normal gap in traffic to complete the left turn. Table 10 indicates the control delay criteria used for determining level of service (LOS) for un-signalized intersections.

At two-way stop controlled intersections, the critical movement, often the minor-street left turn, may control the overall performance of the intersection. The lower threshold for LOS "F" is set at 50 seconds of delay per vehicle as shown in Table 10. In some cases, the delay equations will predict delays greater than 50 seconds for minor-street movements under very low-volume conditions on the minor street (less than 25 vehicles per hour). A LOS " $F$ " threshold is reached with a movement capacity of approximately 85 vehicles per hour or less.

Table 10: Level of Service Criteria for Un-Signalized Intersections

| Level of Service | Control Delay per Vehicle (Seconds) |
| :---: | :---: |
| A | $<10$ |
| B | $>10$ to $\leq 15$ |
| C | $>15$ to $\leq 25$ |
| D | $>25$ to $\leq 35$ |
| E | $>35$ to $\leq 50$ |
| F | $>50$ |

The capacity analysis at the proposed driveways during the AM and PM peak hours is provided in Table 11. The level of service is acceptable. The Synchro reports are provided in Attachment $\mathbf{F}$.

Table 11: Driveway Level of Service by Peak Hour and Phase

| Peak <br> Hour | Movement | Future - Phase I <br> (2019) |  | Future - Phase II <br> (2019) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay <br> sec/veh | LOS | Delay <br> sec/veh |  |
| AM | EB | C | 18.4 | C | 19.9 |
|  | NB LT | A | 8.8 | A | 8.9 |


| Peak <br> Hour | Movement | Future - Phase I <br> (2019) |  | Future - Phase II <br> (2019) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS | Delay <br> sec/veh | LOS | Delay <br> sec/veh |
| PM | EB | C | 23.1 | C | 24.5 |
|  | NB LT | B | 10.4 | B | 10.6 |

## Right Lane Warrant

HRC conducted an analysis of the need for a right turn lane or taper at driveway \#1 using Figure IX. 10 from the Code of Ordinances of the City of Novi adopted April 20, 1987. Since driveway \#1 is the first driveway for southbound trips, it is highly likely that most drivers will use this driveway to enter the site. Driveway \#1 meets warrants for a right turn taper during the peak hours for Phase I and Phase II. See Figure 3 below.


Figure 3. City of Novi Figure IX.10, Standard Warrant for Right Turn Lane or Taper

The standard for a right-turn lane entering taper is 100 feet. The maximum length allowed given the property right-of-way is 40 feet.

## Access Management

There are two proposed access points to the site. The developer is proposing to construct a driveway with direct access to Beck Road and another driveway to a proposed public road on the south side that will be available to future development in the area. The proposed public road meets the ordinance requirement to provide full time access to a non-section line road.

The distance between the centerline of the driveway and the road to Beck Road is 230 feet. This distance meets the required distance of 230 feet for a road with a speed of 45 mph . This requirement comes from the City of Novi Code of Ordinances Section 11-216. There are two residential driveways across from each other on Beck road just north of Driveway \#1 (north). The distance between the centerlines of the residential driveways and Driveway $\# 1$ is 80 feet. These distances do not meet the spacing standards for driveways on opposite sides of undivided roads based on Figure IX. 12 from the City of Novi Code of Ordinances Section 11-219.

## Summary and Recommendations

The traffic study results are as follows:

1. Trip generation projections show that the trips from the development do not exceed Novi's threshold of 100 peak hour trips until Phase II is constructed. If Phased II is constructed then both the AM and PM peak hours will have trip generation volumes above 100.
2. To be conservative, background traffic was projected to grow at $1 \%$ annually.
3. At the signalized intersection of Beck and 11 Mile Roads, the capacity analysis results show that the east and west bound approaches are currently experiencing a LOS E in both peak hours. The addition of the background trips and site development trips do not adversely affect the level of service. The capacity results varied only slightly between Phase I and Phase II. No geometric improvements are necessary at the signalized intersection. Because the actuated signal operates on the FAST-TRAC system, it is continually updating signal splits, thus optimizing the signal performance.
4. The driveway capacity analysis results show no issues.
5. Driveway \#1 (north side) meets warrants for a right lane taper according to the City of Novi's Code of Ordinances Section 11-216. The right turn entering taper should be 40 feet long, the maximum length allowed within the property right-of-way.
6. The recommended driveway spacing per the City of Novi's Code of Ordinances is not met but the conflicting driveways serve single-family residences.

If you have any questions or require any additional information, please contact the undersigned.
Very truly yours,
HUBBELL, ROTH \& CLARK, INC.
Collen Wlill-Strawak
Colleen Hill-Stramsak, P.E., PTOE
Transportation Department Head
CHS/bj1/kmk
Attachments A-Site Plan
B-24 Hour Volumes
C-Turning Movement Counts
D-LCG School Traffic Survey Results
E-Trip Assignment Figures
F-Synchro Reports
G-Resume of Preparer
pc: HRC; File

Attachment A: Site Plan

Y: $: 201508 \backslash 20150884 \backslash 03$ _Studies Working $\backslash 20160106$ _TIS.docx




Attachment B: 24 Hour Volumes

Hubbell, Roth \& Clark, Inc.


Attachment C:Turning Movement Coumts

# Sublell, Rath d Clant, Inc. <br> 555 Hulet Drive Bloomfield Hills, MI 48302 <br> $(248) 454-6300$ 

|  File Name :201512 <br>  Site Code :000000 <br> Start Date :12/1/20  <br> Groups Printed- Unshifted Page No :1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beck Rd Southbound |  |  |  |  | 11 Mile Rd Westbound |  |  |  |  | Beck Rd Northbound |  |  |  |  | 11 Mile Rd Eastbound |  |  |  |  |  |
| Start Time | Left | Thru | Right | Peds | App. Totu! | Left | Thru | Right | Peds | App. Total | Left | Thru | Right | Peds | App. Total | Left | Thru | Right | Peds | App. Total | Int. Total |
| 07:00 AM | 11 | 86 | 7 | 0 | 104 | 2 | 10 | 11 | 0 | 23 | 11 | 195 | 5 | 0 | 211 | 2 | 13 | 5 | 0 | 20 | 358 |
| 07:15 AM | 5 | 89 | 31 | 0 | 125 | 8 | 43 | 19 | 0 | 70 | 43 | 189 | 8 | 0 | 240 | 8 | 16 | 12 | 0 | 36 | 471 |
| 07:30 AM | 7 | 124 | 9 | 0 | 140 | 3 | 27 | 12 | 0 | 42 | 27 | 188 | 12 | 0 | 227 | 24 | 39 | 37 | 0 | 100 | 509 |
| 07:45AM | 13. | 113 | 7 | 0 | 133 | 4 | 5 | 14 | 0 | 23 | 7 | 187. | 12 | 0 | 206 | 13 | 43 | 16 | 0 | 72 | 434 |
| Total | 36 | 412 | 54 | 0 | 502 | 17 | 85 | 56 | 0 | 158 | 88 | 759 | 37 | 0 | 884 | 47 | 111 | 70 | 0 | 228 | 1772 |
| 08:00 AM | 8 | 116 | 10 | 0 | 134 | 6 | 10 | 13 | 0 | 29 | 7 | 164 | 8 | 0 | 179 | 9 | 15 | 8 | 0 | 32 | 374 |
| 08:15 AM | 4 | 116 | 5 | 0 | 125 | 2 | 1 | 8 | 0 | 11 | 8 | 177 | 9 | 0 | 194 | 12 | 7 | 1 | 0 | 20 | 350 |
| 08:30 AM | 5 | 111 | 10 | 0 | 126 | 3 | 9 | 16 | 0 | 28 | 6 | 191 | 8 | 0 | 205 | 5 | 12 | 3 | 0 | 20 | 379 |
| 08:45 AM | 10 | 98. | 23 | 0 | 131 | 8 | 9 | 15 | 0 | 32 | 11 | 167 | 15 | 0 | 193 | 16 | 35 | 6 | 0 | 57 | 413 |
| Total | 27 | 441 | 48 | 0 | 516 | 19 | 29 | 52 | 0 | 100 | 32 | 699 | 40 | 0 | 771 | 42 | 69 | 18 | 0 | 129 | 1516 |
| *** BREAK * ${ }^{\text {*** }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 02:00 PM | 3 | 128 | 3 | 0 | 134 | 3 | 6 | 9 | 0 | 18 | 8 | 133 | 2 | 0 | 143 | 1 | 3 | 3 | 0 | 7 | 302 |
| 02:15 PM | 12 | 111 | 9 | 0 | 132 | 5 | 16 | 5 | 0 | 26 | 22 | 143 | 2 | 0 | 167 | 1 | 6 | 7 | 0 | 14 | 339 |
| 02:30 PM | 8 | 136 | 7 | 0 | 151 | 6 | 8 | 4 | 0 | 18 | 16 | 114 | 5 | 0 | 135 | 18 | 29 | 11 | 0 | 58 | 362 |
| 02:45 PM | 9 | 138 | 8 | 0 | 155 | 1 | 5 | 6 | 0 | 12 | 3 | 112 | 5 | 0 | 120 | 7 | 9 | 19 | 0 | 35 | 322 |
| Total | 32 | 513 | 27 | 0 | 572 | 15 | 35 | 24 | 0 | 74 | 49 | 502 | 14 | 0 | 565 | 27 | 47 | 40 | 0 | 114 | 1325 |
| 03:00 PM | 9 | 157 | 7 | 0 | 173 | 9 | 4 | 10 | 0 | 23 | 1 | 96 | 8 | 0 | 105 | 11 | 12 | 12 | 0 | 35 | 336 |
| 03:15 PM | 11 | 131 | 10 | 0 | 152 | 3 | 8 | 7 | 0 | 18 | 10 | 146 | 9 | 0 | 165 | 9 | 19 | 22 | 0 | 50 | 385 |
| 03:30 PM | 12 | 154 | 11 | 0 | 177 | 4 | 10 | 6 | 0 | 20 | 10 | 157 | 5 | 0 | 172 | 4 | 9 | 5 | 0 | 18 | 387 |
| 03:45 PM | 14 | 158 | 11 | 0 | 183 | 6 | 22 | 5 | 0 | 33 | 5 | 154 | 9 | 0 | 168 | 9 | 7 | 16 | 0 | 32 | 416 |
| Total | 46 | 600 | 39 | 0 | 685 | 22 | 44 | 28 | 0 | 94 | 26 | 553 | 31 | 0 | 610 | 33 | 47 | 55 | 0 | 135 | 1524 |
| 04:00 PM | 11 | 176 | 7 | 0 | 194 | 3 | 17 | 13 | 0 | 33 | 10 | 178 | 7 | 0 | 195 | 19 | 10 | 14 | 0 | 43 | 46.5 |
| 04:15 PM | 17 | 169 | 12 | 1 | 199 | 9 | 19 | 13 | 1 | 42 | 8 | 138 | 8 | 0 | 154 | 12 | 21 | 22 | 0 | 55 | 450 |
| 04:30 PM | 18 | 153 | 8 | 0 | 179 | 4 | 11 | 9 | 0 | 24 | 10 | 172 | 8 | 0 | 190 | 4 | 10 | 9 | 0 | 23 | 416 |
| 04:45 PM | 9 | 162 | 12 | 0 | 183 | 8 | 9 | 13. | 0 | 30 | 7 | 145 | 3 | 0 | 155 | 5 | 11 | 4 | 0 | 20 | 388 |
| Total | 55 | 660 | 39 | 1 | 755 | 24 | 56 | 48 | 1 | 129 | 35 | 633 | 26 | 0 | 694 | 40 | 52 | 49 | 0 | 141 | 1719 |
| 05:00 PM | 15 | 205 | 9 | 0 | 229 | 10 | 20 | 12 | 0 | 42 | 4 | 145 | 3 | 0 | 152 | 4 | 13 | 5 | 0 | 22 | 445 |
| 05:15 PM | 12 | 193 | 4 | 0 | 209 | 7 | 16 | 15 | 0 | 38 | 12 | 181 | 6 | 0 | 199 | 5 | 13 | 8 | 0 | 26 | 472 |
| 05:30 PM | 16 | 208 | 4 | 0 | 228 | 5 | 9 | 10 | 0 | 24 | 7 | 156 | 12 | 0 | 175 | 6 | 10 | 11 | 0 | 27 | 454 |
| 05:45 PM | 12 | 203 | 7 | 0 | 222 | 7 | 13 | 7 | 0 | 27 | 9 | 159 | 5 | 0 | 173 | 3 | 13 | 7 | 0 | 23. | 445 |
| Total | 55 | 809 | 24 | 0 | 888 | 29 | 58 | 44 | 0 | 131 | 32 | 641 | 26 | 0 | 699 | 18 | 49 | 31 | 0 | 98 | 1816 |
| Grand Total | 251 | 3435 | 231 | 1 | 3918 | 126 | 307 | 252 | 1 | 686 | 262 | 3787 | 174 | 0 | 4223 | 207 | 375 | 263 | 0 | 845 | 9672 |
| Apprch \% | 6.4 | 87.7 | 5.9 | 0 |  | 18.4 | 44.8 | 36.7 | 0.1 |  | 6.2 | 89.7 | 4.1 | 0 |  | 24.5 | 44.4 | 31.1 | 0 |  |  |
| Total \% | 2.6 | 35.5 | 2.4 | 0 | 40.5 | 1.3 | 3.2 | 2.6 | 0 | 7.1 | 2.7 | 39.2 | 1.8 | 0 | 43.7 | 2.1 | 3.9 | 2.7 | 0 | 8.7 |  |

# Htubrell, Roth \& Clour, Inc. 

Bloomfield Hills, MI 48302
(248) $454-6300$

|  | Beck Rd Southbound |  |  |  |  | 11 Mile Rd Westbound |  |  |  |  | Beck Rd Northbound |  |  |  |  | 11 Mile Rd Eastbound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Left | Thru | Right | Peds | Appr Total | Left | Thru | Right | Peds | App. Total | Left | Thru | Right | Peds | App. Total | Left | Thru | Right | Peds | App, Total | Int. Total |
| Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Peak Hour for Entire Intersection Begins at 07:15 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 07:15 AM | 5 | 89 | 31 | 0 | 125 | 8 | 43 | 19 | 0 | 70 | 43 | 189 | 8 | 0 | 240 | 8 | 16 | 12 | 0 | 36 | 471 |
| 07:30 AM | 7 | 124 | 9 | 0 | 140 | 3 | 27 | 12 | 0 | 42 | 27 | 188 | 12 | 0 | 227 | 24 | 39 | 37 | 0 | 100 | 509 |
| 07:45 AM | 13 | 113 | 7 | 0 | 133 | 4 | 5 | 14 | 0 | 23 | 7 | 187 | 12 | 0 | 206 | 13 | 43 | 16 | 0 | 72 | 434 |
| 08:00 AM | 8 | 116 | 10 | 0 | 134 | 6 | 10 | 13 | 0 | 29 | 7 | 164 | 8 | 0 | 179 | 9 | 15 | 8 | 0 | 32 | 374 |
| Total Volume | 33 | 442 | 57 | 0 | 532 | 21 | 85 | 58 | 0 | 164 | 84 | 728 | 40 | 0 | 852 | 54 | 113 | 73 | 0 | 240 | 1788 |
| \% App. Total | 6.2 | 83.1 | 10.7 | 0 |  | 12.8 | 51.8 | 35.4 | 0 |  | 9.9 | 85.4 | 4.7 | 0 |  | 22.5 | 47.1 | 30.4 | 0 |  |  |
| PHF | .635 | 891 | . 460 | . 000 | . 950 | . 656 | . 494 | . 763 | . 000 | . 586 | . 488 | . 963 | . 833 | . 000 | . 888 | . 563 | . 657 | . 493 | . 000 | . 600 | . 878 |

Peak Hour Analysis From 02:00 PM to 05:45 PM - Peak 1 of 1

| Peak Hour for Entire Intersection Begins at 05:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05:00 PM | 15 | 205 | 9 | 0 | 229 | 10 | 20 | 12 | 0 | 42 | 4 | 145 | 3 | 0 | 152 | 4 | 13 | 5 | 0 | 22 | 445 |
| 05:15 PM | 12 | 193 | 4 | 0 | 209 | 7 | 16 | 15 | 0 | 38 | 12 | 181 | 6 | 0 | 199 | 5 | 13 | 8 | 0 | 26 | 472 |
| 05:30 PM | 16 | 208 | 4 | 0 | 228 | 5 | 9 | 10 | 0 | 24 | 7 | 156 | 12 | 0 | 175 | 6 | 10 | 11 | 0 | 27 | 454 |
| 05:45 PM | 12 | 203 | 7 | 0 | 222 | 7 | 13 | 7 | 0 | 27 | 9 | 159. | 5 | 0 | 173 | 3 | 13 | 7 | 0 | 23 | 445 |
| Total Volume | 55 | 809 | 24 | 0 | 888 | 29 | 58 | 44 | 0 | 131 | 32 | 641 | 26 | 0 | 699 | 18 | 49 | 31 | 0 | 98 | 1816 |
| \% App. Total | 6.2 | 91.1 | 2.7 | 0 |  | 22.1 | 44.3 | 33.6 | 0 |  | 4.6 | 91.7 | 3.7 | 0 |  | 18.4 | 50 | 31.6 | 0 |  |  |
| PHF | . 859 | . 972 | . 667 | . 000 | .969 | . 725 | . 725 | . 733 | . 000 | .780 | . 667 | . 885 | . 542 | . 000 | . 878 | .750 | . 942 | 705 | . 000 | . 907 | . 962 |

## Attachment D: LCG School Trafic Survey Results

School Traffic Model - Novi, MI

| Daily Volume: | 131 | 131 | 20 | 20 | 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Children |  | Employees |  | Prospects | 100415 |  |
|  | Check-in | Check-out | Check-in | Check-out | Tours | Visits IN | Visits OUT |
| 6:00-7:00 a | 17 | 0 | 2 | 0 | 0.0 | 19 | 17 |
| 7:00-8:00 a | 39 | 4 | 3 | 0 | 0.0 | 46 | 43 |
| 8:00-9:00a | 33 | 7 | 3 | 0 | 0.1 | 43 | 41 |
| 9:00-10:00 a | 10 | 1 | 2 | 0 | 0.2 | 14 | 12 |
| 10:00-11:00 a | 3 | 0 | 1 | 1 | 0.2 | 4 | 4 |
| 11:00-12:00p | 2 | 1 | 1 | 1 | 0.2 | 5 | 5 |
| 12:00-1:00p | 3 | 5 | 2 | 3 | 0.2 | 10 | 11 |
| 1:00-2:00p | 2 | 2 | 3 | 3 | 0.2 | 7 | 6 |
| 2:00-3:00p | 8 | 5 | 3 | 1 | 0.2 | 16 | 14 |
| 3:00-4:00p | 11 | 11 | 1 | 1 | 0.2 | 23 | 24 |
| 4:00-5:00p | 2 | 28 | 0 | 2 | 0.2 | 31 | 33 |
| 5:00-6:00p | 0 | 46 | 0 | 3 | 0.3 | 47 | 50 |
| 6:00-7:00 p | 0 | 19 | 0 | 3 | 0.0 | 20 | 23 |
| Total | 131 | 131 | 20 | 20 | 2 | 283 | 283 |

Based on all LCW schools (809 schools) for week ending 11/6/15
Assumes each child check-in/out is a unique visit (excludes buses, siblings)
Assumes all traffic is incremental
Child/staff volumes based on Year 3 estimates (school year 2018-2019)

Attachment E: Trip Assignment Pigures





Attachment F: Synchro Reports

|  | $\rangle$ | $\rightarrow$ | \% | 6 | - | ( | 4 | $\uparrow$ | 7 |  | $\frac{1}{\square}$ | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 㐌 | T |  | 9 | 官 |  | \% |  | ${ }^{7}$ | \% | + | Pr |
| Traffic Volume (veh/h) | 54 | 113 | 73 | 21 | 85 | 58 | 84 | 728 | 40 | 33 | 442 | 57 |
| Future Volume (veh/h) | 54 | 113 | 73 | 21 | 85 | 58 | 84 | 728 | 40 | 33 | 442 | 57 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $\mathrm{Q}(\mathrm{Qb})$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/n | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate, veh/h | 59 | 123 | 79 | 23 | 92 | 63 | 91 | 791 | 43 | 36 | 480 | 62 |
| Adj No. of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 167 | 150 | 96 | 99 | 116 | 80 | 508 | 1109 | 980 | 311 | 1109 | 980 |
| Arive On Green | 0.04 | 0.14 | 0.14 | 0.01 | 0.11 | 0.11 | 0.03 | 0.60 | 0.60 | 0.03 | 0.60 | 0.60 |
| Sat Flow, veh/h | 1774 | 1103 | 709 | 1774 | 1032 | 706 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume(v), veh/h | 59 | 0 | 202 | 23 | 0 | 155 | 91 | 791 | 43 | 36 | 480 | 62 |
| Grp Sat Flow( $(\mathrm{s}$, veh/h/hn | 1774 | 0 | 1812 | 1774 | 0 | 1738 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve(g_s), | 0.0 | 0.0 | 11.3 | 0.0 | 0.0 | 9.1 | 0.0 | 31.2 | 11 | 0.0 | 14.7 | 1.7 |
| Cycle Q Clear(g_c), s | 0.0 | 0.0 | 11.3 | 0.0 | 0.0 | 9.1 | 0.0 | 31.2 | 1.1 | 0.0 | 14.7 | 1.7 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.41 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 167 | 0 | 246 | 99 | 0 | 196 | 508 | 1109 | 980 | 311 | 1109 | 980 |
| V/C Ratio ( X ) | 0.35 | 0.00 | 0.82 | 0.23 | 0.00 | 0.79 | 0.18 | 0.71 | 0.04 | 0.12 | 0.43 | 0.06 |
| Avail Cap(c_a), veh/h | 169 | 0 | 452 | 142 | 0 | 433 | 530 | 1109 | 980 | 333 | 1109 | 980 |
| HCM Platoon Ratio | 1.00 | 1.00 | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh | 47.6 | 0.0 | 43.8 | 50.7 | 0.0 | 45.1 | 15.7 | 14.9 | 8.8 | 25.3 | 11.5 | 8.9 |
| Incr Delay (d2), s/veh | 1.3 | 0.0 | 6.7 | 1.2 | 0.0 | 7.1 | 0.2 | 3.9 | 0.1 | 0.2 | 1.2 | 0.1 |
| Initial Q Delay (d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),vehiln | 1.7 | 0.0 | 6.1 | 0.7 | 0.0 | 4.7 | 1.5 | 17.0 | 0.5 | 0.8 | 7.8 | 0.8 |
| LnGrp Delay (d),s/veh | 48.9 | 0.0 | 50.5 | 51.9 | 0.0 | 52.2 | 15.9 | 18.8 | 8.9 | 25.4 | 12.7 | 9.0 |
| LnGrp LOS | D |  | D | D |  | D | B | B | A | c | B | A |
| Approach Vol, veh/h |  | 261 |  |  | 178 |  |  | 925 |  |  | 578 |  |
| Approach Delay, s/veh |  | 50.1 |  |  | 52.1 |  |  | 18.0 |  |  | 13.1 |  |
| Approach LOS |  | D |  |  | D |  |  | B |  |  | B |  |



Notes

HCM 2010 Signalized Intersection Summary

|  | \% | $\rightarrow$ | $\square$ | $\square$ | - | ( | 4 | $\uparrow$ | F | 4 | $\frac{1}{\square}$ | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | 官 |  | $\dagger$ | \% |  | \% | 4 | r | 星 | \% | 8 |
| Trafic Volume (veh/h) | 54 | 113 | 73 | 21 | 85 | 58 | 84 | 728 | 40 | 33 | 442 | 57 |
| Future Volume (veh/h) | 54 | 113 | 73 | 21 | 85 | 58 | 84 | 728 | 40 | 33 | 442 | 57 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, vehh/h/n | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate, veh/h | 59 | 124 | 80 | 23 | 93 | 64 | 92 | 799 | 44 | 36 | 485 | 63 |
| Adj No. of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 167 | 151 | 97 | 99 | 117 | 81 | 503 | 1107 | 979 | 305 | 1107 | 979 |
| Arive On Green | 0.04 | 0.14 | 0.14 | 0.01 | 0.11 | 0.11 | 0.03 | 0.59 | 0.59 | 0.03 | 0.59 | 0.59 |
| Sat Flow, veh/h | 1774 | 1101 | 711 | 1774 | 1029 | 708 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume(v) vehih | 59 | 0 | 204 | 23 | 0 | 157 | 92 | 799 | 44 | 36 | 485 | 63 |
| Grp Sat Flow(s),veh/h/ln | 1774 | 0 | 1812 | 1774 | 0 | 1738 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve(g_s) s | 0.0 | 0.0 | 11.4 | 0.0 | 0.0 | 9.2 | 0.0 | 31.8 | 1.2 | 0.0 | 14.9 | 1.7 |
| Cycle Q Clear (g_c), s | 0.0 | 0.0 | 11.4 | 0.0 | 0.0 | 9.2 | 0.0 | 31.8 | 1.2 | 0.0 | 14.9 | 1.7 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.41 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap (c), veh/h | 167 | 0 | 248 | 99 | 0 | 198 | 503 | 1107 | 979 | 305 | 1107 | 979 |
| VIC Ratio(X) | 0.35 | 0.00 | 0.82 | 0.23 | 0.00 | 0.79 | 0.18 | 0.72 | 0.04 | 0.12 | 0.44 | 0.06 |
| Avail Cap(c_a), veh/h | 168 | 0 | 451 | 142 | 0 | 432 | 525 | 1107 | 979 | 327 | 1107 | 979 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh | 47.7 | 0.0 | 43.8 | 50.7 | 0.0 | 45.1 | 15.9 | 15.0 | 8.8 | 25.8 | 11.6 | 8.9 |
| Incr Delay (d2), s/veh | 1.3 | 0.0 | 6.7 | 1.2 | 0.0 | 7.1 | 0.2 | 4.1 | 0.1 | 0.2 | 1.3 | 0.1 |
| Initial Q Delay (d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/n | 1.7 | 0.0 | 6.2 | 0.7 | 0.0 | 4.8 | 1.6 | 17.5 | 0.6 | 0.8 | 7.9 | 0.8 |
| LnGrp Delay (d),Sveh | 49.0 | 0.0 | 50,5 | 51.9 | 0.0 | 52.2 | 16.1 | 19.1 | 8.9 | 26.0 | 12.9 | 9.1 |
| LnGrp LOS | D |  | D | D |  | D | B | B | A | C | B | A |
| Approach Vol, veh/h |  | 263 |  |  | 180 |  |  | 935 |  |  | 584 |  |
| Approach Delay, s/veh |  | 50.2 |  |  | 52.1 |  |  | 18.3 |  |  | 13.3 |  |
| Approach LOS |  | D |  |  | D |  |  | B |  |  | B |  |
| Timer | 1 | 2 | , | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $G+Y+R \mathrm{c}$ ), s | 8.7 | 68.0 | 7.5 | 20.3 | 8.7 | 68.0 | 9.9 | 17.9 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | *5.9 | *5.9 | 6.0 | 6.0 | * 5.9 | * 5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting (Gmax), s | * 4.1 | * 62 | 4.0 | 26.0 | *4.1 | * 62 | 4.0 | 26.0 |  |  |  |  |
| Max Q Clear Time ( $\mathrm{g}_{\mathrm{c}} \mathrm{c}$ +1), s | 2.0 | 33.8 | 2.0 | 13.4 | 2.0 | 16.9 | 2.0 | 11.2 |  |  |  |  |
| Green Ext Time (p_c), s | 0.1 | 6.0 | 0.0 | 0.9 | 0.1 | 3.2 | 0.0 | 0.7 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctrl Delay |  |  | 24.2 |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | C |  |  |  |  |  |  |  |  |  |

Notes

|  | \% | $\rightarrow$ |  | $\square$ |  |  | 4 | $\dagger$ | $P$ | * | 1 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 年 | p |  | \% | W |  | 亭 | 4 | 1 | ¢ | 4 | r |
| Trafic Volume (vehh h ) | 56 | 114 | 74 | 21 | 86 | 61 | 85 | 758 | 40 | 34 | 458 | 60 |
| Future Volume (veh/h) | 56 | 114 | 74 | 21 | 86 | 61 | 85 | 758 | 40 | 34 | 458 | 60 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/h | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate, veh/h | 61 | 124 | 80 | 23 | 93 | 66 | 92 | 824 | 43 | 37 | 498 | 65 |
| Adj No. of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 164 | 151 | 97 | 100 | 117 | 83 | 493 | 1107 | 979 | 290 | 1107 | 979 |
| Arive On Green | 0.04 | 0.14 | 0.14 | 0.01 | 0.12 | 0.12 | 0.03 | 0.59 | 0.59 | 0.03 | 0.59 | 0.59 |
| Sat Flow, veh/h | 1774 | 1101 | 711 | 1774 | 1015 | 720 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume(v) veh/h | 61 | 0 | 204 | 23 | 0 | 159 | 92 | 824 | 43 | 37 | 498 | 65 |
| Grp Sat Flow(s),veh/h/ln | 1774 | 0 | 1812 | 1774 | 0 | 1736 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve(g_s), $s$ | 0.0 | 0.0 | 11.4 | 0.0 | 0.0 | 9.3 | 0.0 | 33.6 | 1.1 | 0.0 | 15.5 | 1.7 |
| Cycle Q Clear (g_c), s | 0.0 | 0.0 | 11.4 | 0.0 | 0.0 | 9.3 | 0.0 | 33.6 | 1.1 | 0.0 | 15.5 | 1.7 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.42 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 164 | 0 | 248 | 100 | 0 | 200 | 493 | 1107 | 979 | 290 | 1107 | 979 |
| VIC Ratio(X) | 0.37 | 0.00 | 0.82 | 0.23 | 0.00 | 0.80 | 0.19 | 0.74 | 0.04 | 0.13 | 0.45 | 0.07 |
| Avail Cap(c_a), veh/h | 168 | 0 | 451 | 143 | 0 | 432 | 515 | 1107 | 979 | 312 | 1107 | 979 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh | 47.8 | 0.0 | 43.8 | 50.7 | 0.0 | 45.0 | 16.3 | 15.4 | 8.8 | 27.2 | 11.7 | 8.9 |
| Incr Delay (d2), s/veh | 1.4 | 0.0 | 6.7 | 1.2 | 0.0 | 7.1 | 0.2 | 4.5 | 0.1 | 0.2 | 1.3 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.8 | 0.0 | 6.2 | 0.7 | 0.0 | 4.9 | 1.6 | 18.6 | 0.5 | 0.8 | 8.3 | 0.8 |
| LnGrp Delay (d),s/veh | 49.2 | 0.0 | 50.5 | 51.9 | 0.0 | 52.1 | 16.5 | 20.0 | 8.9 | 27.4 | 13.0 | 9.1 |
| LnGrp LOS | D |  | D | D |  | D | B | B | A | c | B | A |
| Approach Vol, vehi/h |  | 265 |  |  | 182 |  |  | 959 |  |  | 600 |  |
| Approach Delay, s/veh |  | 50.2 |  |  | 52.1 |  |  | 19.1 |  |  | 13.5 |  |
| Approach LOS |  | D |  |  | D |  |  | B |  |  | B |  |
| Timer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s | 8.7 | 68.0 | 7.5 | 20.3 | 8.7 | 68.0 | 9.8 | 18.0 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | * 5.9 | * 5.9 | 6.0 | 6.0 | * 5.9 | * 5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting (Gmax), s | * 4.1 | * 62 | 4.0 | 26.0 | * 4.1 | * 62 | 4.0 | 26.0 |  |  |  |  |
| Max Q Clear Time (g_c+1), s | 2.0 | 35.6 | 2.0 | 13.4 | 2.0 | 17.5 | 2.0 | 11.3 |  |  |  |  |
| Green Ext Time (p_c), s | 0.1 | 6.2 | 0.0 | 0.9 | 0.1 | 3.3 | 0.0 | 0.7 |  |  |  |  |
| Intersection Summay |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctrl Delay 24.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | C |  |  |  |  |  |  |  |  |  |

Notes

| Intersection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 0.7 |  |  |  |  |  |  |
| Movement | EBL | EBR | NBL |  | SBT | SBR |
| Trafic Vol, veh/h | 23 | 15 | 26 | 849 | 537 | 16 |
| Future Vol, veh/h | 23 | 15 | 26 | 849 | 537 | 16 |
| Conflicting Peds, \#hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | 50 | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 25 | 16 | 28 | 923 | 584 | 17 |




|  | - |  | - | $\checkmark$ | 4 |  | 4 | 1 | 7 | * | $\frac{1}{6}$ | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | \% |  | 早 | F |  | F | 4 | \% | ¢ | \% | ${ }^{7}$ |
| Trafic Volume (veh/h) | 54 | 113 | 73 | 21 | 85 | 58 | 84 | 728 | 40 | 33 | 442 | 57 |
| Future Volume (veh/h) | 54 | 113 | 73 | 21 | 85 | 58 | 84 | 728 | 40 | 33 | 442 | 57 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 100 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/h | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate, veh/h | 61 | 128 | 83 | 24 | 96 | 66 | 95 | 823 | 45 | 37 | 500 | 64 |
| Adj No. of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 168 | 155 | 100 | 98 | 120 | 83 | 488 | 1102 | 974 | 286 | 1102 | 974 |
| Arrive On Green | 0.04 | 0.14 | 0.14 | 0.01 | 0.12 | 0.12 | 0.03 | 0.59 | 0.59 | 0.03 | 0.59 | 0.59 |
| Sat Flow, veh/h | 1774 | 1099 | 713 | 1774 | 1030 | 708 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume(v), veh/h | 61 | 0 | 211 | 24 | 0 | 162 | 95 | 823 | 45 | 37 | 500 | 64 |
| Grp Sat Flow(s),veh/h/n | 1774 | 0 | 1812 | 1774 | 0 | 1738 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve(g_s), s | 0.0 | 0.0 | 11.9 | 0.0 | 0.0 | 9.5 | 0.0 | 33.9 | 1.2 | 0.0 | 15.7 | 1.7 |
| Cycle Q Clear (g_c), s | 0.0 | 0.0 | 11.9 | 0.0 | 0.0 | 9.5 | 0.0 | 33.9 | 1.2 | 0.0 | 15.7 | 1.7 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.41 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 168 | 0 | 255 | 98 | 0 | 203 | 488 | 1102 | 974 | 286 | 1102 | 974 |
| VIC Ratio ( X ) | 0.36 | 0.00 | 0.83 | 0.25 | 0.00 | 0.80 | 0.19 | 0.75 | 0.05 | 0.13 | 0.45 | 0.07 |
| Avail Cap(c_a), veh/h | 168 | 0 | 449 | 140 | 0 | 430 | 510 | 1102 | 974 | 308 | 1102 | 974 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filler(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh | 47.8 | 0.0 | 43.9 | 51.0 | 0.0 | 45.2 | 16.7 | 15.7 | 9.0 | 27.7 | 12.0 | 9.1 |
| Incr Delay (d2), slveh | 1.3 | 0.0 | 6.7 | 1.3 | 0.0 | 7.1 | 0.2 | 4.6 | 0.1 | 0.2 | 1.3 | 0.1 |
| Initial Q Delay (d3),s/veh | 0.0 | 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%), veh/ln | 1.8 | 0.0 | 6.5 | 0.7 | 0.0 | 5.0 | 1.7 | 18.8 | 0.6 | 0.8 | 8.5 | 0.8 |
| LnGrp Delay (d),s/veh | 49.1 | 0.0 | 50.6 | 52.3 | 0.0 | 52.3 | 16.9 | 20.3 | 9.1 | 27.9 | 13.3 | 9.2 |
| LnGrp LOS | D |  | D | D |  | D | B | C | A | C | B | A |
| Approach Vol, veh/h |  | 272 |  |  | 186 |  |  | 963 |  |  | 601 |  |
| Approach Delay, s/veh |  | 50.2 |  |  | 52.3 |  |  | 19.5 |  |  | 13.8 |  |
| Approach LOS |  | D |  |  | D |  |  | . |  |  | B |  |
| Timer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $G+Y+R \mathrm{c}$ ), s | 8.7 | 68.0 | 7.5 | 20.8 | 8.7 | 68.0 | 10.0 | 18.2 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | * 5.9 | * 5.9 | 6.0 | 6.0 | * 5.9 | *5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting (Gmax), s | * 4.1 | * 62 | 4.0 | 26.0 | * 4.1 | * 62 | 4.0 | 26.0 |  |  |  |  |
| Max Q Clear Time (g_ct1), s | 2.0 | 35.9 | 2.0 | 13.9 | 2.0 | 17.7 | 2.0 | 11.5 |  |  |  |  |
| Green Ext Time (p_c), s | 0.1 | 6.1 | 0.0 | 0.9 | 0.1 | 3.3 | 0.0 | 0.7 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctr Delay |  |  | 24.9 |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | C |  |  |  |  |  |  |  |  |  |

Noles

|  | 4 | $\rightarrow$ | $\cdots$ | 1 | 4 | 4 | 4 | ¢ | 7 | $\checkmark$ | $\frac{1}{\square}$ | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 角 | 个 |  | 9 | W |  | $\dagger$ | 4 | 5 | 4 | 产 | r |
| Traffic Volume（veh／h） | 58 | 118 | 76 | 22 | 88 | 63 | 87 | 786 | 42 | 35 | 476 | 61 |
| Future Volume（veh／h） | 58 | 118 | 76 | 22 | 88 | 63 | 87 | 786 | 42 | 35 | 476 | 61 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$ ，veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A pbT） | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow，veh／h／h | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate，veh／h | 63 | 128 | 83 | 24 | 96 | 68 | 95 | 854 | 46 | 38 | 517 | 66 |
| Adj No．of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 166 | 155 | 100 | 99 | 120 | 85 | 476 | 1102 | 974 | 267 | 1102 | 974 |
| Arrive On Green | 0.04 | 0.14 | 0.14 | 0.01 | 0.12 | 0.12 | 0.03 | 0.59 | 0.59 | 0.03 | 0.59 | 0.59 |
| Sat Flow，veh／h | 1774 | 1099 | 713 | 1774 | 1016 | 720 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume（v）veh／h | 63 | 0 | 211 | 24 | 0 | 164 | 95 | 854 | 46 | 38 | 517 | 66 |
| Grp Sat Flow（s），veh／h／ln | 1774 | 0 | 1812 | 1774 | 0 | 1736 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve（g＿s），s | 0.0 | 0.0 | 11.9 | 0.0 | 0.0 | 9.7 | 0.0 | 36.3 | 1.2 | 0.0 | 16.5 | 1.8 |
| Cycle Q Clear（g＿c），s | 0.0 | 0.0 | 11.9 | 0.0 | 0.0 | 9.7 | 0.0 | 36.3 | 1.2 | 0.0 | 16.5 | 1.8 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.41 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h | 166 | 0 | 255 | 99 | 0 | 205 | 476 | 1102 | 974 | 267 | 1102 | 974 |
| VIC Ratio（X） | 0.38 | 0.00 | 0.83 | 0.24 | 0.00 | 0.80 | 0.20 | 0.78 | 0.05 | 0.14 | 0.47 | 0.07 |
| Avail Cap（c＿a），veh／h | 168 | 0 | 449 | 142 | 0 | 430 | 498 | 1102 | 974 | 289 | 1102 | 974 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（l） | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay（d），s／veh | 48.0 | 0.0 | 43.9 | 51.0 | 0.0 | 45.1 | 17.2 | 16.2 | 9.0 | 29.6 | 12.1 | 9.1 |
| Incr Delay（d2），s／veh | 1.4 | 0.0 | 6.7 | 1.2 | 0.0 | 7.1 | 0.2 | 5.4 | 0.1 | 0.2 | 1.4 | 0.1 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（ $50 \%$ ），veh／n | 1.8 | 0.0 | 6.5 | 0.7 | 0.0 | 5.1 | 1.7 | 20.1 | 0.6 | 0.9 | 8.9 | 0.8 |
| LnGrp Delay（d），sveh | 49.4 | 0.0 | 50.6 | 52.2 | 0.0 | 52.2 | 17.4 | 21.5 | 9.1 | 29.9 | 13.6 | 9.3 |
| LnGrp LOS | D |  | D | D |  | D | B | C | A | C | B | A |
| Approach Vol，veh／h |  | 274 |  |  | 188 |  |  | 995 |  |  | 621 |  |
| Approach Delay，s／veh |  | 50.3 |  |  | 52.2 |  |  | 20.6 |  |  | 14.1 |  |
| Approach LOS |  | D |  |  | D |  |  | c |  |  | B |  |
| Timer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration（ $G+Y+R \mathrm{c}$ ），s | 8.7 | 68.0 | 7.5 | 20.8 | 8.7 | 68.0 | 9.9 | 18.4 |  |  |  |  |
| Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ）， s | ＊ 5.9 | ＊5．9 | 6.0 | 6.0 | ＊5．9 | ＊ 5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting（Gmax），s | ＊4．1 | ＊ 62 | 4.0 | 26.0 | ＊ 4.1 | ＊62 | 4.0 | 26.0 |  |  |  |  |
| Max Q Clear Time（g＿cti），s | 2.0 | 38.3 | 2.0 | 13.9 | 2.0 | 18.5 | 2.0 | 11.7 |  |  |  |  |
| Green Ext Time（ p c），s | 0.1 | 6.3 | 0.0 | 0.9 | 0.1 | 3.5 | 0.0 | 0.7 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctrl Delay |  |  | 25.4 |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | C |  |  |  |  |  |  |  |  |  |

Notes

| Intersection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 0.8 |  |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Traffic Vol, veh/h | 30 | 19 | 34 | 873 | 553 | 22 |
| Future Vol, veh/h | 30 | 19 | 34 | 873 | 553 | 22 |
| Conflicting Peds, \#hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | 50 | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 33 | 21 | 37 | 949 | 601 | 24 |



| Minor LaneMMajor Mvmt | NBL | NBT EBLn1 | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: |
| Capacity (veh/h) | 956 | 294 | - | . |
| HCM Lane V/C Ratio | 0.039 | - 0.181 | - | - |
| HCM Control Delay (s) | 8.9 | 19.9 | - | - |
| HCM Lane LOS | A | C | - | - |
| HCM 95th \%tile Q(veh) | 0.1 | 0.7 | - | - |


|  | \% | $\rightarrow$ | V | 1 | - | 4 | 4 | 4 | P | - | $\downarrow$ | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 5 | 官 |  | 1 | Q |  | Y | 4 | 7 | 9 | 4 | P1 |
| Traffic Volume (veh/h) | 18 | 49 | 31 | 29 | 58 | 44 | 32 | 641 | 26 | 55 | 809 | 24 |
| Future Volume (veh/h) | 18 | 49 | 31 | 29 | 58 | 44 | 32 | 641 | 26 | 55 | 809 | 24 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/h | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate, veh/h | 20 | 53 | 34 | 32 | 63 | 48 | 35 | 697 | 28 | 60 | 879 | 26 |
| Adj No. of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 94 | 74 | 48 | 143 | 82 | 62 | 328 | 1234 | 1091 | 441 | 1234 | 1091 |
| Arrive On Green | 0.01 | 0.07 | 0.07 | 0.03 | 0.08 | 0.08 | 0.02 | 0.66 | 0.66 | 0.02 | 0.66 | 0.66 |
| Sat Flow, veh/h | 1774 | 1104 | 708 | 1774 | 982 | 748 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume(v), veh/h | 20 | 0 | 87 | 32 | 0 | 111 | 35 | 697 | 28 | 60 | 879 | 26 |
| Grp Sat Flow(s),veh/h/ln | 1774 | 0 | 1812 | 1774 | 0 | 1731 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve(g_s), s | 0.0 | 0.0 | 5.1 | 0.0 | 0.0 | 6.8 | 0.0 | 22.0 | 0.6 | 0.0 | 32.8 | 0.6 |
| Cycle Q Clear (g_c), s | 0.0 | 0.0 | 5.1 | 0.0 | 0.0 | 6.8 | 0.0 | 22.0 | 0.6 | 0.0 | 32.8 | 0.6 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.43 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap (c), veh/h | 94 | 0 | 122 | 143 | 0 | 144 | 328 | 1234 | 1091 | 441 | 1234 | 1091 |
| VIC Ratio(X) | 0.21 | 0.00 | 0.71 | 0.22 | 0.00 | 0.77 | 0.11 | 0.56 | 0.03 | 0.14 | 0.71 | 0.02 |
| Avail Cap(c_a), veh/h | 137 | 0 | 266 | 158 | 0 | 254 | 354 | 1234 | 1091 | 467 | 1234 | 1091 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh | 53.0 | 0.0 | 49.7 | 50.4 | 0.0 | 48.9 | 21.9 | 9.9 | 6.3 | 15.8 | 11.8 | 6.3 |
| Incr Delay (d2), s/veh | 1.1 | 0.0 | 7.5 | 0.8 | 0.0 | 8.3 | 0.1 | 1.9 | 0.0 | 0.1 | 3.5 | 0.0 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 0.6 | 0.0 | 2.8 | 1.0 | 0.0 | 3.6 | 0.7 | 11.9 | 0.3 | 1.0 | 17.8 | 0.3 |
| LnGrp Delay (d),sveh | 54.1 | 0.0 | 57.3 | 51.2 | 0.0 | 57.1 | 22.1 | 11.8 | 6.4 | 16.0 | 15.3 | 6.3 |
| LnGrpLos | D |  | E | D |  | E | C | B | A | B | B | A |
| Approach Vol, veh/h |  | 107 |  |  | 143 |  |  | 760 |  |  | 965 |  |
| Approach Delay, s/veh |  | 56.7 |  |  | 55.8 |  |  | 12.1 |  |  | 15.1 |  |
| Approach LOS |  | E |  |  | E |  |  | B |  |  | B |  |
| Timer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s | 8.4 | 78.0 | 9.1 | 13.3 | 8.4 | 78.0 | 7.4 | 15.1 |  |  |  |  |
| Change Period ( $Y+R \mathrm{c}$ ), s | * 5.9 | * 5.9 | 6.0 | 6.0 | * 5.9 | *59 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting (Gmax), s | * 4.1 | * 72 | 4.0 | 16.0 | *4.1 | *72 | 4.0 | 16.0 |  |  |  |  |
| Max Q Clear Time ( $\left.\mathrm{g}_{\text {c }} \mathrm{c}+1\right)_{\text {) }} \mathrm{s}$ | 2.0 | 24.0 | 2.0 | 7.1 | 2.0 | 34.8 | 2.0 | 8.8 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 5.1 | 0.0 | 0.2 | 0.0 | 7.3 | 0.0 | 0.3 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{lr}\text { HCM } 2010 \text { Ctrl Delay } & 19.1 \\ \text { HCM } 2010 \text { LOS } & \text { B }\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Notes

|  | - | $\rightarrow$ | V | $\square$ | 4 |  | + | $\dagger$ | F | 5 | $\downarrow$ | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | 食 |  | 9 | P |  | 9 | 产 | \% | 1 | ¢ | r |
| Traffic Volume (veh/h) | 18 | 49 | 31 | 29 | 58 | 44 | 32 | 641 | 26 | 55 | 809 | 24 |
| Future Volume (veh/h) | 18 | 49 | 31 | 29 | 58 | 44 | 32 | 641 | 26 | 55 | 809 | 24 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/h | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate, veh/h | 20 | 54 | 34 | 32 | 64 | 48 | 35 | 704 | 29 | 60 | 888 | 26 |
| Adj No. of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2. | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 94 | 75 | 48 | 143 | 83 | 62 | 322 | 1233 | 1090 | 436 | 1233 | 1090 |
| Arrive On Green | 0.01 | 0.07 | 0.07 | 0.03 | 0.08 | 0.08 | 0.02 | 0.66 | 0.66 | 0.02 | 0.66 | 0.66 |
| Sat Flow, veh/h | 1774 | 1113 | 701 | 1774 | 990 | 742 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume(v) veh/h | 20 | 0 | 88 | 32 | 0 | 112 | 35 | 704 | 29 | 60 | 888 | 26 |
| Grp Sat Flow(s), veh/h/ln | 1774 | 0 | 1814 | 1774 | 0 | 1732 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve(g_s) s | 0.0 | 0.0 | 5.2 | 0.0 | 0.0 | 6.9 | 0.0 | 22.4 | 0.7 | 0.0 | 33.5 | 0.6 |
| Cycle Q Clear(g_c), s | 0.0 | 0.0 | 5.2 | 0.0 | 0.0 | 6.9 | 0.0 | 22.4 | 0.7 | 0.0 | 33.5 | 0.6 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.43 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap (c), veh/h | 94 | 0 | 123 | 143 | 0 | 145 | 322 | 1233 | 1090 | 436 | 1233 | 1090 |
| VIC Ratio(X) | 0.21 | 0.00 | 0.72 | 0.22 | 0.00 | 0.77 | 0.11 | 0.57 | 0.03 | 0.14 | 0.72 | 0.02 |
| Avail Cap(c_a), veh/h | 137 | 0 | 266 | 158 | 0 | 254 | 348 | 1233 | 1090 | 462 | 1233 | 1090 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh | 53.0 | 0.0 | 49.7 | 50.5 | 0.0 | 48.9 | 22.4 | 10.0 | 6.3 | 16.1 | 11.9 | 6.3 |
| Incr Delay (d2), s/veh | 1.1 | 0.0 | 7.5 | 0.8 | 0.0 | 8.3 | 0.1 | 1.9 | 0.0 | 0.1 | 3.7 | 0.0 |
| Initial Q Delay (d3), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 0.6 | 0.0 | 2.8 | 1.0 | 0.0 | 3.6 | 0.7 | 12.0 | 0.3 | 1.0 | 18.3 | 0.3 |
| LnGrp Delay (d),siveh | 54.2 | 0.0 | 57.3 | 51.2 | 0.0 | 57.1 | 22.6 | 11.9 | 6.4 | 16.2 | 15.5 | 6.4 |
| LnGrp LOS | D |  | E | D |  | E | C | B | A | B | B | A |
| Approach Vol, veh/h |  | 108 |  |  | 144 |  |  | 768 |  |  | 974 |  |
| Approach Delay, s/veh |  | 56.7 |  |  | 55.8 |  |  | 12.2 |  |  | 15.3 |  |
| Approach LOS |  | E |  |  | E |  |  | B |  |  | B |  |
| Timer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s | 8.4 | 78.0 | 9.1 | 13.4 | 8.4 | 78.0 | 7.4 | 15.1 |  |  |  |  |
| Change Period ( $Y+R \mathrm{C}$ ), s | * 5.9 | *5.9 | 6.0 | 6.0 | *5.9 | * 5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting (Gmax), s | *4.1 | * 72 | 4.0 | 16.0 | * 4.1 | *72 | 4.0 | 16.0 |  |  |  |  |
| Max Q Clear Time (g_ct1), s | 2.0 | 24.4 | 2.0 | 7.2 | 2.0 | 35.5 | 2.0 | 8.9 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 5.2 | 0.0 | 0.2 | 0.0 | 7.4 | 0.0 | 0.3 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctri Delay |  |  | 19.3 |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | B |  |  |  |  |  |  |  |  |  |

Notes

|  | － | $\rightarrow$ | － | 1 | 4－ | 4 | 4 | $\dagger$ | \％ | ＊ | $\frac{1}{7}$ | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 製 | T |  | 5 | P |  | 管 | 谷 | \％ | 管 | 1 | 1 |
| Traffic Volume（veh／h） | 18 | 49 | 31 | 29 | 59 | 45 | 32 | 663 | 26 | 57 | 839 | 25 |
| Future Volume（veh／h） | 18 | 49 | 31 | 29 | 59 | 45 | 32 | 663 | 26 | 57 | 839 | 25 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$ ，veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 100 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 100 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow，veh／h／ln | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate，veh／h | 20 | 53 | 34 | 32 | 64 | 49 | 35 | 721 | 28 | 62 | 912 | 27 |
| Adj No．of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | $\checkmark 1$ | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 92 | 74 | 48 | 145 | 83 | 63 | 307 | 1232 | 1089 | 425 | 1232 | 1089 |
| Arrive On Green | 0.01 | 0.07 | 0.07 | 0.03 | 0.08 | 0.08 | 0.02 | 0.66 | 0.66 | 0.02 | 0.66 | 0.66 |
| Sat Flow，veh／h | 1774 | 1104 | 708 | 1774 | 980 | 750 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume（V），veh／h | 20 | 0 | 87 | 32 | 0 | 113 | 35 | 721 | 28 | 62 | 912 | 27 |
| Grp Sat Flow（s），veh／h／ln | 1774 | 0 | 1812 | 1774 | 0 | 1730 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve（g．s），s | 0.0 | 0.0 | 5.1 | 0.0 | 0.0 | 7.0 | 0.0 | 23.3 | 0.6 | 0.0 | 35.4 | 0.6 |
| Cycle Q Clear（g＿c），s | 0.0 | 0.0 | 5.1 | 0.0 | 0.0 | 7.0 | 0.0 | 23.3 | 0.6 | 0.0 | 35.4 | 0.6 |
| Prop In Lane | 1.00 |  | 0.39 | 100 |  | 0.43 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h | 92 | 0 | 122 | 145 | 0 | 146 | 307 | 1232 | 1089 | 425 | 1232 | 1089 |
| V／C Ratio（X） | 0.22 | 0.00 | 0.71 | 0.22 | 0.00 | 0.77 | 0.11 | 0.59 | 0.03 | 0.15 | 0.74 | 0.02 |
| Avail Cap（c＿a），veh／h | 135 | 0 | 266 | 157 | 0 | 254 | 333 | 1232 | 1089 | 450 | 1232 | 1089 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（l） | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay（d），s／veh | 53.1 | 0.0 | 49.8 | 50.4 | 0.0 | 48.9 | 23.8 | 10.2 | 6.4 | 16.7 | 12.3 | 6.4 |
| Incr Delay（d2），s／veh | 1.2 | 0.0 | 7.5 | 0.8 | 0.0 | 8.3 | 0.2 | 2.0 | 0.0 | 0.2 | 4.0 | 0.0 |
| Initial Q Delay（d3）s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ $(50 \%)$ ，veh／ln | 0.6 | 0.0 | 2.8 | 1.0 | 0.0 | 3.7 | 0.7 | 12.5 | 0.3 | 1.1 | 19.4 | 0.3 |
| LnGp Delay（d），siveh | 54.3 | 0.0 | 57.3 | 51.2 | 0.0 | 57.2 | 23.9 | 12.2 | 6.4 | 16.9 | 16.3 | 6.4 |
| LnGrp LOS | D |  | E | D |  | E | C | B | A | B | B | A |
| Approach Vol，veh／h |  | 107 |  |  | 145 |  |  | 784 |  |  | 1001 |  |
| Approach Delay，s／veh |  | 56.8 |  |  | 55.9 |  |  | 12.6 |  |  | 16.1 |  |
| Approach LOS |  | E |  |  | E |  |  | B |  |  | B |  |
| Timer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration（ $G+Y+R \mathrm{c}$ ），$s$ | 8.4 | 78.0 | 9.3 | 13.3 | 8.4 | 78.0 | 7.4 | 15.2 |  |  |  |  |
| Change Period（ $Y+\mathrm{Rc}$ ），s | ＊ 5.9 | ＊59 | 6.0 | 6.0 | ＊ 5.9 | ＊ 5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting（Gmax），s | ＊ 4.1 | ＊ 72 | 4.0 | 16.0 | ＊ 4.1 | ＊ 72 | 4.0 | 16.0 |  |  |  |  |
| Max Q Clear Time（ $\left.\mathrm{g} \_\mathrm{c}+11\right) \mathrm{s}$ | 2.0 | 25.3 | 2.0 | 7.1 | 2.0 | 37.4 | 2.0 | 9.0 |  |  |  |  |
| Green Ext Time（ $\mathrm{p}_{-} \mathrm{c}$ ），s | 0.0 | 5.4 | 0.0 | 0.2 | 0.0 | 9.0 | 0.0 | 0.3 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctrl Delay |  |  | 19.7 |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | B |  |  |  |  |  |  |  |  |  |

Notes

| Intersection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 0.7 |  |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Traffic Vol, veh/h | 19 | 24 | 17 | 709 | 897 | 21 |
| Future Vol, veh/h | 19 | 24 | 17 | 709 | 897 | 21 |
| Conflicting Peds, \#/hr | 24 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | \% - | None | \%. | None |
| Storage Length | 0 | - | 50 | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 21 | 26 | 18 | 771 | 975 | 23. |



|  | f | $\rightarrow$ | $\checkmark$ | $\checkmark$ | 4－ | 4 | － | $\uparrow$ | \％ | ＊ | $\frac{1}{7}$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 年 | 食 |  | T | \％ |  | 龺 | 旁 | \％ | 卓 | \％ | 7 |
| Traffic Volume（veh／h） | 18 | 49 | 31 | 29 | 58 | 44 | 32 | 641 | 26 | 55 | 809 | 24 |
| Future Volume（veh／h） | 18 | 49 | 31 | 29 | 58 | 44 | 32 | 641 | 26 | 55 | 809 | 24 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$ ，veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 |  | 1.00 | 1.00 |  | 100 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow，veh／h／ln | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate，veh／h | 20 | 55 | 35 | 33 | 66 | 50 | 36 | 725 | 29 | 62 | 915 | 27 |
| Adj No．of Lanes | 1 | 1 | 0 | 1 | 1. | 0 | 1 | 1 | 1 | 1. | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 92 | 76 | 49 | 145 | 85 | 64 | 304 | 1230 | 1087 | 421 | 1230 | 1087 |
| Arrive On Green | 0.01 | 0.07 | 0.07 | 0.03 | 0.09 | 0.09 | 0.02 | 0.66 | 0.66 | 0.02 | 0.66 | 0.66 |
| Sat Flow，veh／h | 1774 | 1108 | 705 | 1774 | 985 | 746 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume（v），veh／h | 20 | 0 | 90 | 33 | 0 | 116 | 36 | 725 | 29 | 62 | 915 | 27 |
| Grp Sat Flow（s），veh／h／ln | 1774 | 0 | 1813 | 1774 | 0 | 1731 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve（g＿s），s | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 | 7.2 | 0.0 | 23.7 | 0.7 | 0.0 | 35.9 | 0.6 |
| Cycle Q Clear（g＿c），s | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 | 7.2 | 0.0 | 23.7 | 0.7 | 0.0 | 35.9 | 0.6 |
| Prop In Lane | 1.00 |  | 0.39 | 1.00 |  | 0.43 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h | 92 | 0 | 125 | 145 | 0 | 149 | 304 | 1230 | 1087 | 421 | 1230 | 1087 |
| VIC Ratio（X） | 0.22 | 0.00 | 0.72 | 0.23 | 0.00 | 0.78 | 0.12 | 0.59 | 0.03 | 0.15 | 0.74 | 0.02 |
| Avail Cap（c＿a），veh／h | 135 | 0 | 266 | 157 | 0 | 254 | 329 | 1230 | 1087 | 446 | 1230 | 1087 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 1.00 |
| Upstream Filter（l） | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay（d），slveh | 53.2 | 0.0 | 49.8 | 50.5 | 0.0 | 48.9 | 24.2 | 10.3 | 6.4 | 17.0 | 12.4 | 6.4 |
| Incr Delay（d2），s／veh | 1.2 | 0.0 | 7.6 | 0.8 | 0.0 | 8.4 | 0.2 | 2.1 | 0.0 | 0.2 | 4.1 | 0.0 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 | 0.0 | 0.0 |
| \％ile BackOfQ（50\％），veh／ln | 0.6 | 0.0 | 2.9 | 1.0 | 0.0 | 3.8 | 0.8 | 12.8 | 0.3 | 1.1 | 19.7 | 0.3 |
| LnGrp Delay（d），s／veh | 54.4 | 0.0 | 57.4 | 51.3 | 0.0 | 57.2 | 24.4 | 12.4 | 6.5 | 17.2 | 16.5 | 6.5 |
| LnGrp LOS | D |  | E | D |  | E | C | B | A | B | B | A |
| Approach Vol，veh／h |  | 110 |  |  | 149 |  |  | 790 |  |  | 1004 |  |
| Approach Delay，s／veh |  | 56.9 |  |  | 55.9 |  |  | 12.7 |  |  | 16.3 |  |
| Approach LOS |  | E |  |  | E |  |  | B |  |  | B |  |
| Tmer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration（ $G+Y+R \mathrm{c}$ ），$s$ | 8.4 | 78.0 | 9.3 | 13.5 | 8.4 | 78.0 | 7.4 | 15.4 |  |  |  |  |
| Change Period（ $Y+R \mathrm{c}$ ），$s$ | ＊ 5.9 | ＊ 5.9 | 6.0 | 6.0 | ＊ 59 | ＊ 5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting（Gmax），s | ＊ 4.1 | ＊ 72 | 4.0 | 16.0 | ＊ 4.1 | ＊ 72 | 4.0 | 16.0 |  |  |  |  |
| Max Q Clear Time（ $\left.g_{\text {＿}} \mathrm{c}+11\right)$ ，$s$ | 2.0 | 25.7 | 2.0 | 7.3 | 2.0 | 37.9 | 2.0 | 9.2 |  |  |  |  |
| Green Ext Time（p＿c），s | 0.0 | 5.4 | 0.0 | 0.2 | 0.0 | 7.7 | 0.0 | 0.3 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctrl Delay |  |  | 20.0 |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | B |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |  |
| Background－ 2019 Build Hubbell，Roth \＆Clark，Inc． |  |  |  |  |  |  |  |  |  |  | nchro | Report <br> age 1 |


|  | \％ | － |  | － |  | 4 | 4 | $\dagger$ | F | 4 | $\downarrow$ | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 知 | 靣 |  | 4 | 解 |  | \％ | 鱼 | 8 | 管 | 4 | P |
| Trafic Volume（veh／h） | 20 | 51 | 32 | 30 | 60 | 47 | 33 | 687 | 27 | 59 | 869 | 26 |
| Future Volume（veh／h） | 20 | 51 | 32 | 30 | 60 | 47 | 33 | 687 | 27 | 59 | 869 | 26 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(Q b)$ ，veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 |  | 1.00 | 1.00 |  | 100 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow，veh／h／ln | 1863 | 1937 | 1900 | 1863 | 1863 | 1976 | 1863 | 1863 | 1937 | 1863 | 1863 | 1937 |
| Adj Flow Rate，veh／h | 22 | 55 | 35 | 33 | 65 | 51 | 36 | 747 | 29 | 64 | 945 | 28 |
| Adj No．of Lanes | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 94 | 76 | 49 | 147 | 84 | 66 | 285 | 1228 | 1085 | 406 | 1228 | 1085 |
| Arrive On Green | 0.01 | 0.07 | 0.07 | 0.03 | 0.09 | 009 | 0.02 | 0.66 | 0.66 | 0.02 | 0.66 | 0.66 |
| Sat Flow，veh／h | 1774 | 1108 | 705 | 1774 | 969 | 760 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Grp Volume（v），veh／h | 22 | 0 | 90 | 33 | 0 | 116 | 36 | 747 | 29 | 64 | 945 | 28 |
| Grp Sat Flow（s），veh／h／ln | 1774 | 0 | 1813 | 1774 | 0 | 1729 | 1774 | 1863 | 1647 | 1774 | 1863 | 1647 |
| Q Serve（g＿s），s | 0.0 | 00 | 5.3 | 0.0 | 0.0 | 7.2 | 0.0 | 25.0 | 0.7 | 0.0 | 38.4 | 0.6 |
| Cycle Q Clear（g＿c），s | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 | 7.2 | 0.0 | 25.0 | 0.7 | 0.0 | 38.4 | 0.6 |
| Prop In Lane | 100 |  | 0.39 | 1.00 |  | 0.44 | 100 |  | 1.00 | 1.00 |  | 100 |
| Lane Grp Cap（c），veh／h | 94 | 0 | 125 | 147 | 0 | 149 | 285 | 1228 | 1085 | 406 | 1228 | 1085 |
| V／C Ratio（X） | 0.24 | 0.00 | 0.72 | 0.22 | 0.00 | 0.78 | 0.13 | 0.61 | 0.03 | 0.16 | 0.77 | 0.03 |
| Avail Cap（c＿a），veh／h | 135 | 0 | 265 | 157 | 0 | 253 | 310 | 1228 | 1085 | 431 | 1228 | 1085 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（l） | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay（d），slveh | 53.2 | 0.0 | 49.9 | 50.5 | 0.0 | 48.9 | 26.1 | 10.6 | 6.5 | 17.9 | 12.9 | 6.5 |
| Incr Delay（d2），s／veh | 1.3 | 0.0 | 7.6 | 0.8 | 0.0 | 8.4 | 0.2 | 2.2 | 0.0 | 0.2 | 4.7 | 0.0 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（ $50 \%$ ），veh／ln | 0.7 | 0.0 | 2.9 | 1.0 | 0.0 | 3.8 | 0.8 | 13.4 | 0.3 | 1.2 | 21.0 | 0.3 |
| LnGrp Delay（d），slveh | 54.5 | 0.0 | 57.5 | 51.2 | 0.0 | 57.3 | 26.3 | 12.9 | 6.5 | 18.1 | 17.6 | 6.5 |
| LnGrp LOS | D |  | E | D |  | E | C | B | A | B | B | A |
| Approach Vol，veh／h |  | 112 |  |  | 149 |  |  | 812 |  |  | 1037 |  |
| Approach Delay，s／veh |  | 56.9 |  |  | 56.0 |  |  | 13.2 |  |  | 17.3 |  |
| Approach LOS |  | E |  |  | E |  |  | B |  |  | B |  |
| Timer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration（ $G+Y+\mathrm{Rc}$ ），$s$ | 8.5 | 78.0 | 9.4 | 13.5 | 8.5 | 78.0 | 7.5 | 15.4 |  |  |  |  |
| Change Period（ $Y+R \mathrm{c}$ ），s | ＊ 5.9 | ＊ 5.9 | 6.0 | 6.0 | ＊ 5.9 | ＊ 5.9 | 6.0 | 6.0 |  |  |  |  |
| Max Green Setting（Gmax），s | ＊ 4.1 | ＊ 72 | 4.0 | 16.0 | ＊ 4.1 | ＊ 72 | 4.0 | 16.0 |  |  |  |  |
| Max Q Clear Time（g＿c＋1），s | 2.0 | 27.0 | 2.0 | 7.3 | 2.0 | 40.4 | 2.0 | 9.2 |  |  |  |  |
| Green Ext Time（p＿c），s | 0.0 | 5.7 | 0.0 | 0.2 | 0.0 | 8.0 | 0.0 | 0.3 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 2010 Ctrl Delay |  |  | 20.6 |  |  |  |  |  |  |  |  |  |
| HCM 2010 LOS |  |  | C |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |  |
| Future－2019 Build Hubbell，Roth \＆Clark，Inc． |  |  |  |  |  |  |  |  |  |  | chro 9 | Report <br> Page 1 |

$\overline{\text { Intersection }}$
Int Delay, s/veh 0.9

| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Traffic Vol, veh/h | 25 | 31 | 22 | 732 | 923 | 28 |
| Future Vol, veh/h | 25 | 31 | 22 | 732 | 923 | 28 |
| Conflicting Peds, \#hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | \% | None | - | None | - | None |
| Storage Length | 0 | - | 50 | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 27 | 34 | 24 | 796 | 1003 | 30 |



## Attachment G: Resume of Preparer

## Education

B.S., Civil Engineering,

Transportation
Wayne State University 2000
M.S., C.E., Transportation

Wayne State University 2002
Professional Registration/ Certification
Professional Engineer, Michigan
No. 51514
Professional Traffic Operations Engineer
No. 1427

## Affiliations

American Society of Civil Engineers
Institute of Transportation Engineers
Tau Beta Pi, The Engineering Honor Society

Women's Transportation Seminar
Intelligent Transportation Society of Michigan

Colleen Hill-Stramsak, P.E., PTOE<br>Associate

Ms. Hill-Stramsak has been with HRC since 2002. She manages the Traffic Engineering Department and provides municipal traffic engineering services to several communities in Michigan. She prepares transportation studies, impact studies for land developments, traffic crash analysis, traffic operations, safety studies and traffic maintenance plans. She is responsible for modeling and simulating transportation networks to optimize, also evaluating safety and operational improvements. Software proficiency in Highway Capacity Software, Synchro/SimTraffic, CORSIM, ACCUSIM II, MicroStation, Autodesk Map 3D, RODEL and VISSIM. Ms. HillStramsak is also responsible for preparing traffic control and detours plans, traffic signal design and layout plans. She conducted the Older Driver Highway Design Workshop while at Wayne State University. She is a past member of the International Board of Direction and the Great Lakes District President (2012-2014) of the Institute of Transportation Engineers and a member of the Michigan Section.

## Professional Experionce

## I-75 \& Sashabaw Road Interchange Improvements

## Independence Township \& RCOC

Independence Township received authorization from the FHWA and MDOT to modify Exit 89 of I- 75 and the intersection of Sashabaw and Waldon Roads, immediately south of the interchange. Project manager responsible for preliminary engineering, utility coordination, traffic and safety engineering (including traffic signal design for four locations), preparation of cost estimate and bid documents.

## Improvements to Belleville Road and Costco Truck Depot Driveway V3 Companies

Project manager responsible for the off-site improvements for a private development in Van Buren Township. The project was designed to Wayne County Department of Public Services standards. Plans included the design of pavement and grading, traffic signal, pavement markings and signs to be included in the permit and bid packages submitted to Van Buren Township and Wayne County.

## Tienken Road Rehabilitation, Adams to Livernois

## Road Commission for Oakland County

Rehabilitation of Tienken Road from Adams Road to the roundabout at Livernois Road. HRC was responsible for preliminary engineering, utility coordination, traffic and safety engineering, preparation of cost estimate and bid documents. QAQC engineer for the traffic signals, maintenance of traffic, signing and pavement marking plans.

## Evergreen Road Reconstruction, 10 Mile to 11 Mile

City of Southfield
Designed the reconstruction of 1.02 miles Evergreen Road to a four-lane boulevard, with two modern roundabouts, drainage, storm sewer, concrete pavement, curb, gutter, sidewalk and ramps, water main, landscaping, lighting, traffic signals, storm water retention and streetscaping. QA/QC engineer for traffic signals and construction assistance.

## Farmington Road Reconstruction, 10 Mile to 11 Mile

## City of Farmington Hills

Designed 1.0 mile reconstruction of 2-lane Farmington Road including bike lanes and pedestrian facilities in a rolling terrain. Project included new water main and was located adjacent to protected historical and

## Colleen Hill-Stramsak, P.E., PTOE <br> Associate

recreation properties. QAQC engineer for traffic signal design, signing and pavement marking plans, assistance in vertical alignment and detail grades, and cost estimates.

## East Main Street Safety Project

## Kalamazoo County Road Commission

Designed reconstruction of a 2-lane road section to 3-lanes and a 4-lane road section to 3-lanes on East Main Street from East Michigan Ave to Sprinkle Rd. Project included modernization of three existing traffic signals to facilitate communication and run coordinated timing plans. Project included modifications to signs, pavement markings, and pedestrian accessibility. Permanent new right-of-way was acquired. Project manager for signal design assistance and plan preparation.

## US-24 Rehabilitation

## Michigan Department of Transportation - Oakland TSC

The project includes 8.609 miles of cold milling and HMA overlay of the existing composite pavement, pavement repairs, miscellaneous replacement of driveway, sidewalk, drainage, guardrail and curb and gutter, signs and signal upgrades on US-24 (Dixie Highway) from N Telegraph Road to west of I-75 in Oakland County. HRC is responsible for preliminary engineering and preparation of bid documents. Traffic engineering tasks include intersection and segment crash analyses and recommendations for geometric improvements, turning radii analysis and sign upgrade plans specifications.

## West Stadium Boulevard Reconstruction <br> City of Ann Arbor

Traffic engineer responsible for traffic data collection and traffic analysis of alternatives for project encompassing reconstruction of approximately 1.0 mile of an existing 4 lane road to a 3 lane road with bike lanes on both sides. Design included new water main, sanitary sewer, a new master storm system with in-line detention, decorative roadway lighting and underground power distribution for new and existing lighting. Maintenance of traffic plans considered that included the POE at UM Football Stadium, which anchors the eastern end of the corridor and is a major traffic generator. HRC developed several MOT concepts for consideration by city staff.

## Van Dyke (M-53) Traffic Study <br> City of Warren DDA/TIFA

Project Manager to analyze the impact to traffic and mobility of converting Van Dyke Avenue from 7 lanes to 5 lanes with a bicycle lane in each direction between Eight Mile Road and Stephens Road. HRC collected traffic and travel time data. HRC prepared a report describing existing conditions with special emphasis on non-motorized network and public transit, alternatives considered, capacity analysis of existing conditions and future alternatives, safety analysis and recommendations. HRC also provided a conceptual plan for the 5 lane plus bike lane alternative.

## Crosswalk Study and Design for 12 Mile and Woodward City of Berkley

Traffic Engineer on a project to redesign the median on Woodward Avenue at 12 Mile Road in order to improve the movement of pedestrians without negatively impacting the movement of vehicles. The project included collecting traffic data for both vehicles and pedestrians, developing two alternate concepts for the median design, conducting capacity analysis

## Colleen Hill-Stramsak, P.E., PTOE <br> Associate

utilizing Synchro software for the AM and PM peak hours of existing configuration and two conceptual designs, and analyzing vehicle queues on the crossovers in order to recommend storage length. Based on analyses, made recommendation for reconfiguring median to City of Berkley and MDOT. Assisted city staff with securing funding to make the geometric improvements.

## West Avenue and Fourth Street Traffic Study

## City of Jackson

Project manager to conduct a corridor analysis to investigate the appropriate corridor design in preparation for the reconstruction and rehabilitation of portions of West Avenue and Fourth Street. Project included studying laneage and width to maximize green space while maintaining acceptable traffic flow based on desires by area residents and businesses. Tasks included data collection, analysis of various options for the intersection of Fourth Street/Greenwood Avenue/Griswold Street to mitigate the existing congestion and safety issues and preparation of optimized signal timing plans for the entire network.

## Site Circulation and Traffic Impact Assessment

## Yeshiva Beth Yehudah Schools

A traffic study was performed for the proposed school expansion of Yeshiva Beth Yehudah at the 10 Mile Road campus in the City of Oak Park, Michigan. Extensive data collection was conducted to analyze the site access, circulation and parking needs at the existing girls' school and the preschool center. Recommendations were provided for future traffic operations, site access and student drop off and pick areas for the proposed school building.

## University of Michigan Central Campus Transit Center University of Michigan Architecture, Engineering and Construction Department

Engineering services to design and develop complete construction documents to reconstruct North University Avenue between Fletcher Street and Church Street and to provide shelters for major transit transfer point. Stakeholders include the City of Ann Arbor, Ann Arbor Transportation Authority (AATA) and the University of Michigan's Parking and Transportation Services.

## Mixed Use Development in Northville Township

## Real Estate interests Group, Inc.

Project manager for comprehensive traffic data collection for a proposed mixed use development in Northville Township. Work included two traffic signal warrant studies.

## Traffic Impact and Parking Analysis for Heritage Park North

 Grand Sakwa of Grand Blanc, LLCTraffic Engineer for traffic impact analysis of $600,000 \mathrm{SF}$ mixed commercial development in Grand Blanc Township to accompany rezoning request and subsequent site plan review. Study included data collection, trip generation and comparisons, trip assignment, capacity analysis of existing and future traffic conditions, parking analysis, signal optimization and recommendations. Conducted signal warrant analysis and access management review. Retained to develop alternatives for access issues, design the new traffic signal on Saginaw Road and modify traffic signal on Dort Highway.

## Colleen Hill-Stramsak, P.E., PTOE <br> Associate

## Traffic Impact Analysis for White Lake Hill Mixed Use Development

 Laurtec, Ltd.Traffic Engineer for traffic impact analysis of mixed commercial development in White Lake Township to accompany rezoning request and site plan review. Study included data collection, trip generation and comparisons, trip assignment, capacity analysis of existing and future traffic conditions, signal optimization and recommendations.

## Transportation and Infrastructure Assessment and Master Plan Vandewalle \& Associates

Traffic Engineer for Project Development Study to provide transportation and utilities planning and analysis for 640 acre planned unit development for the Lansing Township Downtown Development Authority Master Plan. Work involved conducting traffic volume studies, performing trip generation and traffic assignment; determining internal capture rate, developing traffic model using Synchro 6.0 and SimTraffic for existing and eight alternative scenarios.

Traffic Impact Study for Rezoning of Northwest Corner of 10 Mile Road and Beck Road, Novi
Ten \& Beck, LLC
A traffic impact study was performed for the rezoning of 10 Mile Road and Beck Road in the City of Novi, Michigan. The study included estimation of background traffic, trip generation, trip distribution and assignment, capacity analysis, recommendations to mitigate impacts of additional traffic and a report summarizing results.

## Traffic Circulation Analysis for Ann Arbor Huron High School City of Ann Arbor

Staff engineer for circulation and safety study to improve overall safety in and around the school campus for drivers, bus users and pedestrians. Analyzed existing traffic conditions, identified deficiencies and suggested countermeasures. Conducted license plate survey to track traffic on the school premise. Performed capacity analysis using HCS and detailed crash analysis at two intersections and two driveways.

## Traffic Signal Optimization Phase 2

City of Detroit
As a subconsultant to URS, HRC was responsible for traffic signal optimization for the W. Vernor Highway corridor as part of a project to analyze and retime 130 traffic signals in the City of Detroit. HRC's responsibilities include verification of geometric data, providing optimized timing plans for $\mathrm{AM}, \mathrm{PM}$ and Off peak periods and post implementation review and recommendations for fine tuning final timings.

Traffic \& Safety Design Services for Traffic Signal Optimization for 13 Intersections in Allegan and Cass Counties MDOT Southwest Region
Project Manager for project to provide MDOT with optimized traffic signal operations. Work included collection of 24 hour vehicle counts by approach and turning movement counts during peak hours, development of Synchro model, crash analysis, optimizing signal timing plans by time of day and red-lining existing permits. Also performed signal warrants, calculated clearances and flash schedules, and evaluated left-turn warrants.

## Colleen Hill-Stramsak, P.E., PTOE Associate

## Owen Road Signal Optimization

## City of Fenton

Project manager on a signal optimization study to coordinate and provide progression at eight signalized intersections along the Owen/Shiawassee Road corridor as part of a signal modernization project funded by CMAQ. Work included data collection, development and calibration of Synchro model, optimizing signal timing plans by time of day and red-lining existing permits. Two of the intersections are controlled by MDOT as they are ramps to/from US-23. All work was done in accordance with current MDOT

## Oakland County Signal Systems Optimization Project (Phase 2) Road Commission for Oakland County

Performed QA/QC for transportation networks modeled and optimized through this project. Calculated clearance intervals as per RCOC accepted practice. Performed safety analysis for over 160 study intersections, performed traffic crash pattern analysis and prepared recommendations for safety improvements. Prepared red-lined traffic signal timing plans. Also assisted with field checks of installed signal timing plans and prepared recommendations for revised signal timing.

## Mack Traffic Signal Design

## Wayne County Department of Public Services

Project manager for a project to prepare plans, specifications and an estimate to upgrade the traffic signals at two intersections on Mack Avenue on the boarder of Detroit and Grosse Pointe. This is a CMAQ funded project. HRC was responsible for road survey, utility coordination, preparing plan sheets, special provisions, cost estimate and a bid proposal.

## Traffic Signal Improvements-Silver Lake/Leroy and South Long Lake/Torrey

## City of Fenton

Traffic engineer coordinating the preparation of traffic signal plans for the construction and installation of 2 traffic signals, one of which was incorporated into the adjacent rail-highway grade crossing. Prepared permanent pavement markings and signing plan; maintenance of traffic plans in accordance with MDOT standards and the Michigan MUTCD. Coordination of permits and scheduling with Canadian National Railroad.

## Bloomfield Traffic Signals

## Bloomfield Township and City of Bloomfield Hills

Traffic engineer responsible for preparing plans and special provisions per RCOC standards for the construction and installation of 2 traffic signals, one of which was incorporated into the adjacent rail-highway grade crossing. Plans were prepared in accordance with the Michigan MUTCD. Coordinated construction activities between Canadian National Railroad and Contractor. Prepared permanent pavement markings and signing plan; maintenance of traffic plans in accordance with MDOT standards and the Michigan MUTCD.

## 2006 Troy CMAQ Intersection Improvements

 City of TroyTraffic engineer responsible for preparing PS\&E per RCOC standards for the redesign of three adaptive-controlled traffic signals affected by the addition of right turn lanes. Box span configuration with flashing yellow arrow used for permissive protected left turns.

## Colleen Hill-Stramsak, P.E., PTOE

Associate

## Big Beaver Road Traffic Signal Design City of Troy

Design Engineer for redesign of four adaptive-controlled traffic signals affected by widening of Big Beaver Road from 4 to 6 lane boulevard. Mast arm configuration.

## Rochester Road and South Boulevard Traffic Signal Design City of Troy

Prepared plans and special provisions per RCOC standards for construction and installation of a redesigned traffic signal. Configured traffic signal contact height and sag using SIGSPAN.

## Radar Speed Displays Project

## J. Ranck Electric, Inc.

The City of Rochester Hills received a Community Oriented Policing Services (COPS) Grant from the U.S. Department of Justice. The Radar Speed Display Project was installed in 13 locations in established school speed zones. The project will enable speeds to be monitored and recorded when traffic volumes are highest and when children/pedestrian safety is most critical. The work consisted of three phases: a pre-implementation traffic study, utility coordination and design; the procurement and installation of approved materials and equipment; and a post installation evaluation study. Also conducted pre and post speed studies to support the effectiveness of the new signs.

## Providence Park Hospital Parking Study

## St. John Providence

Performed a site analysis of existing and future parking requirements at Providence Park Hospital. As Project Manager, evaluated the existing and projected future conditions based planned 32 bed expansion of the hospital. Aerial photographs were used to evaluate existing parking demand during typical weekday peak hours. Relocation of accessible parking spaces based on need was also included in the parking study.

## Westmarket Square Parking Study <br> City of Novi

HRC performed a shared parking study for Westmarket Square for the peak design month of December and used the time of day factors for a peak day in December for the retail stores. HRC utilized the Urban Land Institute's Shared Parking, $2^{\text {nd }}$ Edition to determine if the number of parking spaces provided met the requirements of the City of Novi Zoning Ordinance. The parking lot provided in excess of 1,570 spaces initially and was expanded during the various project phases while maintaining parking and access to the operational portion of the center.

## Statewide Road Safety Audits

## Michigan Department of Transportation - Safety

Project Manager on eight road safety audits (RSA) for programmed safety projects in Michigan. HRC has audited intersections, road segments, interchanges throughout the state of Michigan. For each, HRC prepared a comprehensive project reference book; conducted an in-depth crash analysis; planned and facilitated the RSA meetings meeting; led the field review of the study locations which included daytime, nighttime, peak and off-peak observations; evaluated the risks associated with each safety issue and the suggested improvements; developed cost estimates; performed an economic analysis using the methods in the Highway Safety Manual and prepared the RSA Findings Report.

Colleen Hill-Stramsak, P.E., PTOE<br>Associate

## Road Safety Audit for the Proposed Brandon Elementary School

 Charter Township of BrandonProject Engineer for the road safety audit of a driveway onto Oakwood Road from the proposed Brandon Elementary School. The road safety audit included: 24 hour traffic volumes and speeds; sight distance evaluation; a detailed crash analysis; projected traffic volumes and patterns for the proposed elementary school. Performed a sight distance evaluation and a detailed crash analysis for the road segment to be accessed by the proposed driveway, and recommended road improvements for safe access to and from the site.

## Dixie Highway Safety Study

## Charter Township of Springfield

Project manager for safety study of Dixie Highway corridor from Big Lake Road north to Davisburg Road. The study included crash analysis, review and evaluation of safety countermeasures, access management techniques, signal warrant study, left-turn phasing study and possible realignment of Big Lake Road/Dixie Highway intersection with Deerhill Drive/Dixie Highway intersection. A comprehensive report was prepared and the results presented to the Township Board of Trustees.

## Intersection Safety Studies

City of Wixom
Conducted safety studies at for two adjacent intersections on Beck Road in Wixom. Performed peak hour turning movement counts, collected 24 -hour traffic volume and speed data, reviewed crash history, reviewed geometrics, and suggested countermeasures with cost estimates.

## State Farm Intersection Safety Studies <br> Road Commission for Oakland County

Reviewed geometrics, traffic volume, traffic crash and traffic conflict characteristics for three high crash intersections. Evaluated existing safety issues, recommended potential traffic safety engineering countermeasures, and developed an implementation plan of action.

## Upgrade and Rehabilitation of Non-Freeway Signing <br> Michigan Department of Transportation

Project Manager to upgrade 129 miles of non-freeway signing in Berrien County in the Southwest Region. The project required verification of the existing inventory, collecting new sign data, updating the MTSIS inventory and making recommendations to MDOT Lansing and MDOT Coloma TSC. HRC conducted a review of crashes and TCOs to see if there are possible safety improvements. HRC prepared sign plan sheets, created SignCAD details, and assembled the e-proposal for the bid package.

## Non-Freeway Signing Upgrade on M-150 in Oakland County Michigan Department of Transportation

Project manager for log job to upgrade all non-freeway signs on M-150 from M-59 to Tienken Road in Oakland County. The project required verification of the existing inventory, collecting new sign data, updating the MTSIS inventory and making recommendations to MDOT Lansing and MDOT Oakland TSC. A contract was prepared containing all upgrades needed to the existing signs.

## Colleen Hill-Stramsak, P.E., PTOE

Associate

## Sashabaw Road Corridor Study

## Charter Township of Independence

Project Engineer who prepared a model of future transportation needs for Sashabaw Road corridor at interchange with I-75. Evaluated alternatives. Developed list of recommended geometric improvements.

## Community Policy on Mid-Block Pedestrian Crossings

 City of WyomingResearched and recommended practices and developed policy for approving and format for evaluating requests for mid-block crossings.

## Traffic Impact Analysis for the Proposed National Street Extension City of Howell

Developed traffic model of proposed extension of National Street from Grand River Avenue to D-19 at ramps to I-96 as a by-pass to downtown Howell. Developed methodology for calculating traffic to be diverted to National Street Extension and performed capacity analysis using Synchro for existing, background and 2015 traffic conditions. Evaluated alternatives to signalization and performed analysis of two recommended roundabouts using RODEL.

## M-15 Access Management Plan

Michigan Department of Transportation
Performed driveway spacing analysis using MDOT, Oakland and Genesee County Standards. Responsible for performing traffic crash analysis for driveways and intersections along the M-15 corridor over its 20 mile length between I-75 and I-69.

## Oakland County SCATS Clearance Interval Study Road Commission for Oakland County

Coordinated the data collection effort for a total of 274 intersections included in the project. Each intersection was surveyed for approach speed, grade, pedestrian and vehicle clearance distances. Developed a user-friendly spreadsheet to calculate and report vehicle and pedestrian clearance intervals.

## Squirrel Road Corridor Study

## City of Auburn Hills

Involved in data collection, development and optimization of 35 mile network using Synchro for the study to evaluate the future capacity needs of the Squirrel Road Corridor. Study area encompassed 36 signalized intersections, 5 interchanges, and several unsignalized intersections.

## Tienken Road Environmental Assessment

## Road Commission for Oakland County

Worked on Environmental Assessment to reconstruct 1.5 miles of Tienken Road in the City of Rochester Hills to meet future volumes and safety concerns. Prepare traffic analysis report, conducted noise analysis in accordance with provisions of 23 CFR Section 772 of Federal Code of Regulations and conducted air quality analysis Conducted air quality analysis for microscale carbon monoxide pollution using CAL3QHC, version 2.

## Abbott Road Environmental Assessment

## City of East Lansing

Worked on Environmental Assessment to widen one mile of Abbott Road from a 2 to 5 lane road. Prepared crash analysis and responsible for design

## Colleen Hill-Stramsak, P.E., PTOE Associate

concept report. Conducted noise analysis in accordance with provisions of 23 CFR Section 772 of Federal Code of Regulations. Type I project did not trigger noise abatement measures.

## 26 Mile Road Environmental Assessment

Road Commission of Macomb County
Collected turning movement counts and geometric information for 27 intersections along 26 Mile Road in Macomb County. Performed traffic crash analysis for intersections and segments in the study area. Modeled the 19 mile long corridor using Synchro software for Build and No Build scenarios.

## Williams Lake Road Environmental Assessment Road Commission for Oakland County

Conducted a traffic and safety analysis to better determine appropriate termini of the project and provide the necessary justification for the preferred alternative for a realigned Williams Lake Road. Conducted traffic crash analysis and license plate survey to determine the safety and traffic flow impacts of the proposed realignment. Conducted air quality analysis for microscale carbon monoxide pollution using CAL3QHC, Version 2.0. CO concentrations were all below NAAQS for 1 -hour and 8 -hour exposures.

## Presentations/Publications

"Road Safety Audits," ACEC/MDOT (American Council of Engineering Companies of Michigan/Michigan Department of Transportation) Partnering Workshop January 2014 (with Jeffrey Bagdade, P.E., PTOE, and Steven Loveland, P.E., PTOE).
"Intersection Safety within a Signal Optimization Project," Institute of Transportation Engineers 2004 Technical Conference and Exhibit Compendium of Technical Papers, March 2004 (with Stephen B. Dearing, P.E.).
"Intersection Safety within a Signal Optimization Project," Presented Institute of Transportation Engineers 2004 Technical Conference and Exhibit, March 31, 2004.
"Intersection Safety within a Signal Optimization Project," Presented Institute of Transportation Engineers Michigan Section Technical Session, February 12, 2004.
"Michigan ITE Website Update," Presented Institute of Transportation Engineers Michigan Section Technical Session, February 12, 2004.
"Change and Clearance Interval Design on Red-Light Running and Late Exits," Transportation Research Record, No. 1856 (p. 193-201), Washington D.C., 2003 (with Kerrie L. Schattler and Tapan K. Datta).

FAÇADE REVIEW

Façade Review Status Summary:
Full Compliance, No waiver required

City of Novi Planning Department 45175 W. 10 Mile Rd.
Novi, MI 48375-3024

## Re: FACADE ORDINANCE - Revised Final Site Plan

Learning Care Academy, PSP16-0030, FKA 15-0149
Façade Region: 1, Zoning District: OSC \& PSLR
Dear Ms. McBeth;

The following is the Facade Review for Concept / Planned Suburban Low Rise Approval of the above referenced project, based on the drawings prepared by Greenberg Farrow Architects, dated 3/29/15. The percentages of materials proposed for each façade are as shown below. Materials that are in violation of the Ordinance, if any, are shown on bold.

| Façade Region 1 | East <br> (Front) | South | West | North | Façade Ordinance <br> Section 2520 Maximum <br> (M inimum) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Brick | $58 \%$ | $72 \%$ | $70 \%$ | $58 \%$ | $100 \%(30 \% \mathrm{MIN}$ ) |
| "C"Brick (CMU) | $13 \%$ | $28 \%$ | $30 \%$ | $29 \%$ | $25 \%$ |
| Fiber Cement Panels (Nchiha, Cedar) | $16 \%$ | $0 \%$ | $0 \%$ | $7 \%$ | $50 \%(11)$ |
| Spanderal Glass (blue-green) | $7 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $50 \%$ |
| Spanderal Glass (Grey) | $5 \%$ | $0 \%$ | $0 \%$ | $6 \%$ | $50 \%$ |
| Flat Metal (Entrance Canopy) | $1 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $50 \%$ |

Façade Ordinance, Section 5.15 - As shown above all materials are in full compliance with the Façade ordinance.

Planned Suburban Low Rise Overlay Ordinance, Section 3.21.C - The proposed building is located in the Planned Suburban Low Rise Overlay District. This Ordinance promotes a "single family residential character". The proposed building is commercial in nature and would not be in technical compliance with this section. For example, the Ordinance prescribes 6:12 minimum sloped roofs with gables, hips, dormers, overhangs, shingles gutters. Although nicely designed with excellent propositions and attention to detail, the proposed design lacks these specific design features.

The intent of the PSLR Ordinance is to promote uses, including educational, that can serve as a transition between low-intensity residential and high-intensity office and commercial uses. It is noted that the project is located on the easterly edge of the PSLR district with high-intensity multiple residential and multi-story medical buildings nearby. We believe that the introduction of specific design features listed in the PLSR Ordinance to achieve residential character would in fact be detrimental to the overall design of the building and would diminish the compatibility with nearby buildings without contributing to the transitional intent of the Ordinance.

Recommendation - For the reasons stated above it is our recommendation that the proposed design is consistent with the intent and purpose of the PLSR Ordinance Section 3.21.C, and is in full compliance with the Façade Ordinance Section 5.15.

## Notes to the Applicant:

1. Inspections - The Façade Ordinance requires inspections) for all projects. Materials displayed on the approved sample board will be compared to materials delivered to the site. It is the applicant's responsibility to request the inspection of each façade material at the appropriate time. Inspections may be requested using the Novi Building Department's Online Inspection Portal with the following link. Please click on "Click here to Request an Inspection" under "Contractors", then click "Façade".
2. The Façade Ordinance requires screening of roof top equipment from all vantage points both on and off site. It is assumed that the parapets are raised sufficiently to screen any roof top equipment. If roof equipment screens are used they must be consistent with the Façade Ordinance.

## http://www.cityofnovi.org/Services/CommDev/OnlineInspectionPortal.asp.

If you have any questions regarding this project please do not hesitate to call.
Sincerely,
DRN \& Associates, Architects PC


Douglas R. Necci, AIA

FRE REVIEW

April 6, 2016

TO: Barbara McBeth- Deputy Director of Community Development Kirstein Mellem- Plan Review

RE: Everbrook Academy / Leaming Care Academy

CITY COUNCIL

## Mayor

Bob Gatt

Mayor Pro Tem Dave Staudt

Gwen Markham
Andrew Mutch
Wayne Wrobel
Laura Marie Casey
Brian Burke

City Manager
Pete Auger
Director of Public Safety
Chief of Police
David E. Molloy
Director of EMS/Fire Operations
Jeffery R. Johnson
Assistant Chief of Police Erick W. Zinser

Assistant Chief of Police Jerrod S. Hart

Novi Public Safety Administration
45125 W. Ten Mile Road
Novi, Michigan 48375
248.348 .7100
248.347. 0590 fax
cityofnovi.org

PSP\#16-0030
Project Description: A 11,700sq. ft. pre-sc hool facility loc ated on Beck Rd. north of Eleven Mile.

## Comments:

1) Fire apparatus access drives to and from buildings through parking lots shall have a minimum fifty (50) feet outside tuming radius and designed to support a minimum of thirtyfive(35)tons.(D.C.S. Sec 11-239(b)(5)) 10/7/15 Item Corrected
2) All fire apparatus access roads (public and private) with a dead-end drive in excess of one hundred fifty (150) feet shall be designed with a tum-a round designed in accordance with Figure VIII-I or a cul-de-sac designed in accordance with Figure VIII-F. (D.C.S. Sec 11-194 (a)(20)) 4/6/16 Item Comected
3) Include all hydrants and water mains on future submittals. 10/7/15 Item Corected.
4) No part of a commercial, industrial, or multiple residential area shall be more than 300 feet from a hydrant. (D.C.S. Sec. 11-68 (f)(1)c.1) 10/7/15 Item Corrected
5) If a new building is more than 175 feet from a public fire hydrant, a hydrant shall be provided ten (10) to fifteen (15) feet off the right side of the drive entrance as recommended by the Fire Chief or his designee. (D.C.S. Sec. 101-68 (f)(1)h.) 4/6/16 Item Corrected
6) Fire department connections shall be located on the street side of build ings, fully visible and recognizable from the street or nearest point of fire department vehicle access and within $100^{\prime}$ of a hydrant or as otherwise approved by the code official. (Intemational Fire Code) 10/7/15 Item Corrected

# City of Novi PSLR Preliminary Site Plan Submittal RESPONSE to City Staff Comments dated April 20, 2016 Beck Road at 11 Mile - Everbrook Academy 

## Project Location:

The vacant 4.15 acre property located approximately 330 feet north of the northwest corner of Beck Road and 11 Mile Road having a parcel ID of 50-22-17-400-040 (the "Property").

## Project Description:

On behalf of Learning Care Group, Inc., ICAP Development proposes to construct a state-of-the-art Everbrook Academy on the Property (the "Project"). Headquartered in Novi, MI, Learning Care Group is known as an international leader in child education and family solutions by providing early education and care services to children ages 6 week to 12 years. Learning Care Group currently operates over 900 school facilities across several countries.
The education-focused child care facility being proposed on the Property will have a maximum capacity of 138 children and have up to 22 staff members. The total cost of the improvements will exceed \$3.0M.

This project received Concept Plan approval from the Plan Commission on November 4, 2015 and from the City Council on November 23rd, 2015. Additionally, the PSLR Development Agreement, including plans and elevations, were approved by City Council on April 18, 2016.

## Scope of Project:

Since Concept Plan approval, the site and building design of the Project have been altered to address City Staff comments and Learning Care Group's refined business model. The most significant change was the removal of the proposed building and play area expansion. This expansion is no longer part of this requested Project approval and has been removed from the plans submitted for Preliminary Site Plan review.
The proposed Project continues to include the following improvements to the Property:

- An 11,844 sq. ft. free-standing child care facility.
- A 44 stall parking area with drive aisles designed to accommodate future shared access with adjacent properties.
- 20,700 square feet of fenced-in outdoor play area which will include shade areas, a basketball court, and playground equipment.

Included in this submittal are the following documents for reference:
(i) Site and Civil Plans showing all proposed improvements to the Property.
(ii) A complete Landscaping Plan for the Project.
(iii) Existing conditions survey of the Property.
(iv) The floor plan and exterior elevations for the proposed building.

## Land-Use:

The Property is currently zoned R-3 with PSLR overlay. A child care facility is permitted under this zoning classification.
The Project also accomplishes the PSLR Intent of providing "high-quality uses" that are "low-density". The Project has a floor area ratio of $6.6 \%$ at full capacity and an impervious area of roughly $25 \%$. Given the residential to the east and the high density medical to the north, this Project helps meet the desire of the PSLR to create a "transitional area between lower-intensity detached one-family residential and higher-intensity office and retail uses". The proposed user of the Property, a highquality child care and educational facility, can also serve as an amenity for the citizens who live in the surrounding neighborhoods or work in the surrounding commercial buildings.

## Deviations to the Ordinance:

No additional deviations to the Ordinance are requested with this submittal. All deviations were previously approved in the Concept Plan phase and incorporated into the PSLR Development Agreement approved by City Council.

## Wetlands:

Per the existing conditions survey (included in this submittal) and the memorandum to the City of Novi from Environmental Consulting \& Technology, Inc. dated August 13, 2015, the Property does not appear to contain any regulated wetlands. There is an existing drainage ditch along the west property line, however the Project avoids impacting the floodplain in that area.

## Regulated Woodlands:

Based on the Regulated Woodland map dated February 20, 2015, there is a small portion of Regulated Woodlands near the drainage ditch along the west property line. This woodland area follows the western property line and is approximately 19' wide on the north and $33^{\prime}$ wide on the south side of the Property. This area is depicted on the Site and Landscaping Plans. In accordance with the Woodland Protection Ordinance (Chpt 37), we have avoided impacting the Regulated Woodlands by avoiding any construction activities in this area of the Property.

## Traffic and Cross-Access:

As required in the Plan Commission recommendations on November 4, 2015, which were approved by City Council on November 23rd, 2015, the Applicant has completed a Traffic Impact Study (TIS) for the Project which analyzed the traffic impact of this child care facility. The final TIS, dated January 6 , 2016, is included with this submittal. The results of the TIS were as follows:

1. The trip generation from the Project does not exceed Novi's threshold for peak AM and PM hour trip generation.
2. The Project does not impact the level of service at the intersection of 11 Mile Road and Beck Road.
3. The driveway capacity analysis showed no issues with the Project.
4. The northern driveway warrants a taper lane according to the requirements in City Ordinance Section 11-216. NOTE: This taper lane has been added to the submitted plans.
5. The recommended driveway spacing per the City of Novi is not met; however, the conflicting driveways serve single-family residential properties and do not pose a concern.

As shown on the site plan, the Project contemplates two access points from Beck Road. During preliminary reviews of the Project, Planning Staff encouraged vehicular connection points between the Project and adjacent properties in order to increase cross-access between parcels. We have done this in several ways. First, we have created space for a future connection point from the Project's parking lot to the property to the north. Second, by locating the Access Drive along the current southern property boundary, we anticipate future connection(s) with the property to the south. To increase flexibility for access points, we have extended this roadway a far west as possible without
impacting the floodplain or Regulated Woodland along the west property line. Since the vacant land to the south and west of the Property is currently one larger parcel, we feel this roadway is designed appropriately to provide access to both southern and western portions of this property.

Preliminary Site Plan Comments from City Staff dated April 29, 2016.
As required, the Applicant has addressed all City Staff comments to the Preliminary Site Plan. The Applicant's comments are outlined below:

## Ordinance Comments:

Comment \#1: Setbacks: The Applicant agrees to make adjusted measures on Final Site Plan Submittal.

Comment \#2: Loading Spaces: A dedicated Loading Space is not required for the operation of this child care facility and is not contemplated for this Project. Truck traffic to this facility is limited to deliveries of food and school supplies. Both will be delivered by box truck or delivery van and all deliveries will be completed during nonbusiness or non-peak hours. Given the nature of a child care operation, many of the parking stalls will only be used temporarily during peak hours in the morning and afternoon. This will allow delivery trucks to easily access the building during non-peak hours.

Comment \#3: Outdoor lighting: The Applicant agrees to make adjustments on Final Site Plan Submittal.

Comment \#4: Hours of Operation: The hours of operation for this Project is 6:30AM to 6:30PM. The Applicant agrees to add this information to the Final Site Plan Submittal.

Comment \#5: Building Design Standards: The Applicant agrees to make adjustments on Final Site Plan Submittal.

Comment \#6: Accessory Buildings: The Applicant agrees to make adjustments on Final Site Plan Submittal.

Comment \#7: Bicycle Parking: The Applicant agrees to make adjustments on Final Site Plan Submittal.

Comment \#8: Dumpster Enclosure: The Applicant agrees to make adjustments on Final Site Plan Submittal.

Comment \#9: Fences, Maintenance: The Applicant agrees to make adjustments on Final Site Plan Submittal.

Comment \#10: Rooftop Equipment: The Applicant agrees to make adjustments on Final Site Plan Submittal.

Comment \#11: Pedestrian Connectivity: The Applicant agrees to make adjustments on Final Site Plan Submittal.

## Engineering Comments:

Comment \#39: Cost Estimate: The Applicant agrees to include the estimate with the Final Site Plan Submittal.

## Landscaping Comments:

Adjacent to Public Rights-of-Way:
Comment \#1: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

Comment \#2: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

## Street Tree Requirements:

Comment \#1: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

Comment \#2: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

## Parking Lot Landscaping:

Comment \#1: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

Comment \#2: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

Comment \#3: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

Parking Lot Perimeter Canopy Trees:
Comment \#1: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

Comment \#2: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

## Storm Basin Landscape:

Comment \#2: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

Corner Clearance: The Applicant agrees to work with Staff to make adjustments on the Final Site Plan Submittal.

## Traffic Review Comments:

No specific comments were shown as requiring a response from the Applicant. The Applicant agrees to address all comments included in the Traffic Review Memorandum from Matt Klawon, PE dated April 28, 2016, except EXTERNAL SITE ACCESS AND OPERATIONS Comment \#2. The 40 foot taper along Beck Road at the northern entrance to the Project was designed at the maximum length possible given the existing location of a power pole within the right-of-way. If lengthened to the property line, the taper would be limited to a width of 5.5'. We believe the current design of the 40 ' taper will adequately accommodate the limited amount of traffic entering this property through this northern driveway.

## Summary:

Leaning Care Group and ICAP Development are very excited to present this proposed child care development to the City of Novi. We look forward to your review and hope to begin construction in Spring 2016.

Respectfully Submitted,


Brian R Adamson
ICAP Development LLC

