
#### SECTION 6 STREAMBANK STABILIZATION EVALUATION AND RECOMMENDATIONS

#### INTRODUCTION

This report evaluates on-going concerns with streambank stabilization for specific watercourses within the City. Past studies have focused on the regional detention basin system, and many improvements have been made over the past ten years by the City to address issues related to high frequency storm events. However, there are existing on-going streambank stabilization concerns in the urbanized portions of the City. This report focused on:

- The Middle Branch of Rouge River downstream of Grand River to the southerly City
   Limits (excluding Meadowbrook Lake)
- Ingersol Creek downstream of Ten Mile to Meadowbrook Lake
- Bishop Creek downstream of 11 Mile to Ingersol Creek

The creek study areas are identified in the vicinity location map below.



Spalding DeDecker Associates, Inc.

Engineering Consultants Infrastructure | Land Development | Surveying | Landscape Architecture (800) 598-1600 | www.sda-eng.com



#### **Field Investigation**

In August 2013, Spalding DeDecker Associates, Inc. (SDA) and Environmental Consulting & Technology, Inc. (ECT) completed a stream walk assessment of the subject creeks. Areas of streambank erosion were located using GPS coordinates, details were noted, and the area was photographed. A Bank Erosion Hazard Index (BEHI) data sheet for each location was completed detailing the specific erosion observed (see summary of each location in Appendix A of the attached report).

During the stream walk, SDA and ECT identified 56 specific sites of concern. Thirteen (13) of the sites were further identified as "priority sites of concern" based on the resulting BEHI value, proximity to infrastructure or private property, and length. Of the 56 sites of concern, 11 were identified in the Bishop Creek reach (2 priority sites), 12 within the Ingersol Creek reach (4 priority sites), and 33 in the Middle Branch of the Rouge River reach (7 priority sites).

The estimated costs to repair the priority sites range from \$20,000 to \$832,000, as summarized in the attached report prepared by ECT under the direction of SDA. Please refer to the remainder of the report for more detailed descriptions of the erosion observed, and techniques and costs for recommended repairs.

Engineering Consultants Infrastructure | Land Development | Surveying | Landscape Architecture (800) 598-1600 | www.sda-eng.com





October 16, 2013

Mr. Gerrad Godley, P.E. Spalding DeDecker Associates, Inc. 905 South Boulevard East Rochester Hills, MI 48307

#### **RE:** Novi Stormwater Master Plan

Mr. Godley,

Environmental Consulting & Technology, Inc. (ECT) has prepared the following summary of the streambank assessments and site investigations of Bishop Creek, Ingersol Creek, and the Middle Branch of the Rouge River for your use.

#### **Streambank Erosion Inventory Data Collection**

ECT and Spalding DeDecker completed field work in August 2013. Significant areas of streambank erosion were noted, photographed, and documented with a GPS. A Bank Erosion Hazard Index (BEHI)<sup>1</sup> data sheet was filled out for each erosion reach using the MDEQ Standard Operating Procedure for Modified BEHI assessment<sup>2</sup>.

The Modified BEHI procedure ranks streambank erosion potential based on streambank parameters including root depth, root density, bank angle and surface protection. Field measurements are converted to an index for each parameter (1-10) and then summed for an overall score for each site (maximum 40). Overall scores are assigned a risk category of Very Low (<5.8), Low (5.8-11.8), Moderate (11.9-19.8), High (19.9-27.8), Very High (27.9-34.0), or Extreme (34.1-40).

The data for all erosion locations are summarized in Table 1 in Appendix A which includes columns noting the length of the reach, associated photos, and BEHI parameters and scores. Bank erosion areas were noted as Left, Right, or Both. Left and right bank orientations are relative to looking downstream. The location of the sites are shown in Figures 1 and 2 in Appendix A.

#### **Streambank Erosion Site Prioritization**

ECT identified 13 of the 56 sites surveyed as priority sites of concern for the surveyed reaches. The 13 sites were selected based on BEHI value, proximity to infrastructure or private property, and length. The selected sites are highlighted in the following table.

2200 Commonwealth Blvd., Suite 300 Ann Arbor, MI 48105

> (734) 769-3004

FAX (734) 769-3164

 <sup>&</sup>lt;sup>1</sup> Rosgen, D.L. 2001. A Practical Method of Computing Streambank Erosion Rate. Proceedings of the Seventh Federal Interagency Sedimentation Conference, Vol. 2, pp. II – 9-15, March 25-29, 2001, Reno, NV.
 <sup>2</sup> "Assessing Bank Erosion Potential Using Rosgen's Bank Erosion Hazard Index (BEHI)", Michigan Department of Environmental Quality, Version 3, 8/12/08.

|      | Priority Sites (see Appendix A for all sites)                                                                                                                                                                                                                 |                |         |                         |                        |                                         |                           |                                    |                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-------------------------|------------------------|-----------------------------------------|---------------------------|------------------------------------|-------------------|
| Site | Bank                                                                                                                                                                                                                                                          | Length<br>(ft) | Photos  | Concerns                | Bank<br>Height<br>(ft) | BEHI<br>Rating                          | BEHI<br>Category          | Stabilization Options <sup>1</sup> | Estimated<br>Cost |
|      |                                                                                                                                                                                                                                                               |                |         |                         | Bisl                   | hop Creek                               |                           |                                    | <u> </u>          |
| 4    | Right                                                                                                                                                                                                                                                         | 50             | 178-189 | Residential<br>Property | 7.0                    | 29.0                                    | Very High                 | V + CW/GW                          | \$25,000          |
| 10   | Both                                                                                                                                                                                                                                                          | 410            | 210-241 | Residential<br>Property | 4.0                    | 29.0                                    | Very High                 | RR + VMSE                          | \$332,000         |
|      |                                                                                                                                                                                                                                                               |                |         |                         | Inge                   | ersol Creek                             | -                         |                                    |                   |
| 1    | Left                                                                                                                                                                                                                                                          | 110            | 251-257 | Sediment<br>Loading     | 5.5                    | 31.0                                    | Very High                 | SF+LS-JP+RR+VMSE                   | \$49,000          |
| 3    | Right                                                                                                                                                                                                                                                         | 65             | 263-267 | Residential<br>Property | 5.3                    | 23.5                                    | High                      | RR + VMSE/CW/GW                    | \$32,000          |
| 4    | Left                                                                                                                                                                                                                                                          | 40             | 268-272 | Residential<br>Property | 5.5                    | 26.0                                    | High                      | RR + VMSE/CW/GW                    | \$20,000          |
| 5    | Right                                                                                                                                                                                                                                                         | 65             | 273-275 | Residential<br>Property | 7.0                    | 31.0                                    | Very High                 | RR + V + VMSE/CW/GW                | \$42,000          |
|      | Middle Br                                                                                                                                                                                                                                                     |                |         |                         | liddle Bra             | anch Rouge River                        |                           |                                    |                   |
| 3    | Left                                                                                                                                                                                                                                                          | 100            | 334-346 | Sediment<br>Loading     | 10.0                   | 28.0                                    | Very High                 | ry High RR + V + VMSE/CW/GW        |                   |
| 4    | Both                                                                                                                                                                                                                                                          | 100            | 347-354 | Sediment<br>Loading     | 4.5                    | 24.0                                    | High                      | V + VMSE/CW/GW                     | \$51,000          |
| 7    | Right                                                                                                                                                                                                                                                         | 180            | 364-378 | Sediment<br>Loading     | 10.0                   | 34.0                                    | Very High                 | High SF+LS-JP+RR+VMSE+V            |                   |
| 8    | Left                                                                                                                                                                                                                                                          | 440            | 379-382 | Sediment<br>Loading     | 3.5                    | 34.0                                    | Very High RR + VMSE \$178 |                                    | \$178,000         |
| 14   | Left                                                                                                                                                                                                                                                          | 165            | 408-412 | Sediment<br>Loading     | 7.0                    | 29.0                                    | Very High RR + CW/GW \$10 |                                    | \$105,000         |
| 15   | Left                                                                                                                                                                                                                                                          | 40             | 413-416 | Sediment<br>Loading     | 13.0                   | 26.0                                    | High RR + CW/GW \$39      |                                    | \$39,000          |
| 26   | Both                                                                                                                                                                                                                                                          | 1000           | 476-504 | Sediment<br>Loading     | 3.5                    | 31.0                                    | Very High                 | RR + V + VMSE                      | \$832,000         |
|      | <ul> <li>Stabilization Options<sup>1</sup></li> <li>Refer to Appendix B for descriptions of stabilization options</li> <li>Note: "+" indicates using multiple techniques, "f" indicates optional techniques, dependent on more detailed site data.</li> </ul> |                |         |                         |                        | Estimated<br>Cost                       | Quantity                  |                                    |                   |
|      | SF = Slope Flattening         LS-JP = Live Staking/Joint Planting         RR = Vegetated Riprap Revetment/Riprap Toe         VMSE = Vegetated Mechanically Stabilized Earth                                                                                   |                |         |                         | \$25                   | LF of bank                              |                           |                                    |                   |
|      |                                                                                                                                                                                                                                                               |                |         |                         | \$5                    | LF of bank                              |                           |                                    |                   |
|      |                                                                                                                                                                                                                                                               |                |         |                         | \$175                  | LF of bank                              |                           |                                    |                   |
|      |                                                                                                                                                                                                                                                               |                |         |                         | \$125                  | LF of bank                              |                           |                                    |                   |
|      | V = Vanes                                                                                                                                                                                                                                                     |                |         |                         | \$4,000                | Each                                    |                           |                                    |                   |
|      | CW = Cribwalls                                                                                                                                                                                                                                                |                |         |                         | \$35                   | SF of front face (bank length x height) |                           |                                    |                   |
|      | GW = Geocell Walls                                                                                                                                                                                                                                            |                |         |                         | \$50                   | SF of front face (bank length x height) |                           |                                    |                   |

**Priority Sites (see Appendix A for all sites)** 



Streambank stabilization typically consists of a combination of techniques that are implemented based on a detailed analysis of site conditions, price and availability of materials. The stabilization options suggested in the above table are based on preliminary site data. The "+" sign indicates that the listed techniques would likely be used in combination and the "/" sign indicates that only one of the listed techniques would likely be used, dependent upon more detailed site information. Typical details and descriptions of the streambank stabilization techniques can be found in Appendix B.

The unit cost estimates provided in the table are based on published unit costs and ECT's construction cost data. These unit costs do not include design, permitting, construction management, and other construction costs (e.g. bonds and mobilization/demobilization). A 35% markup was applied to account for these additional costs in the estimated cost for each site.

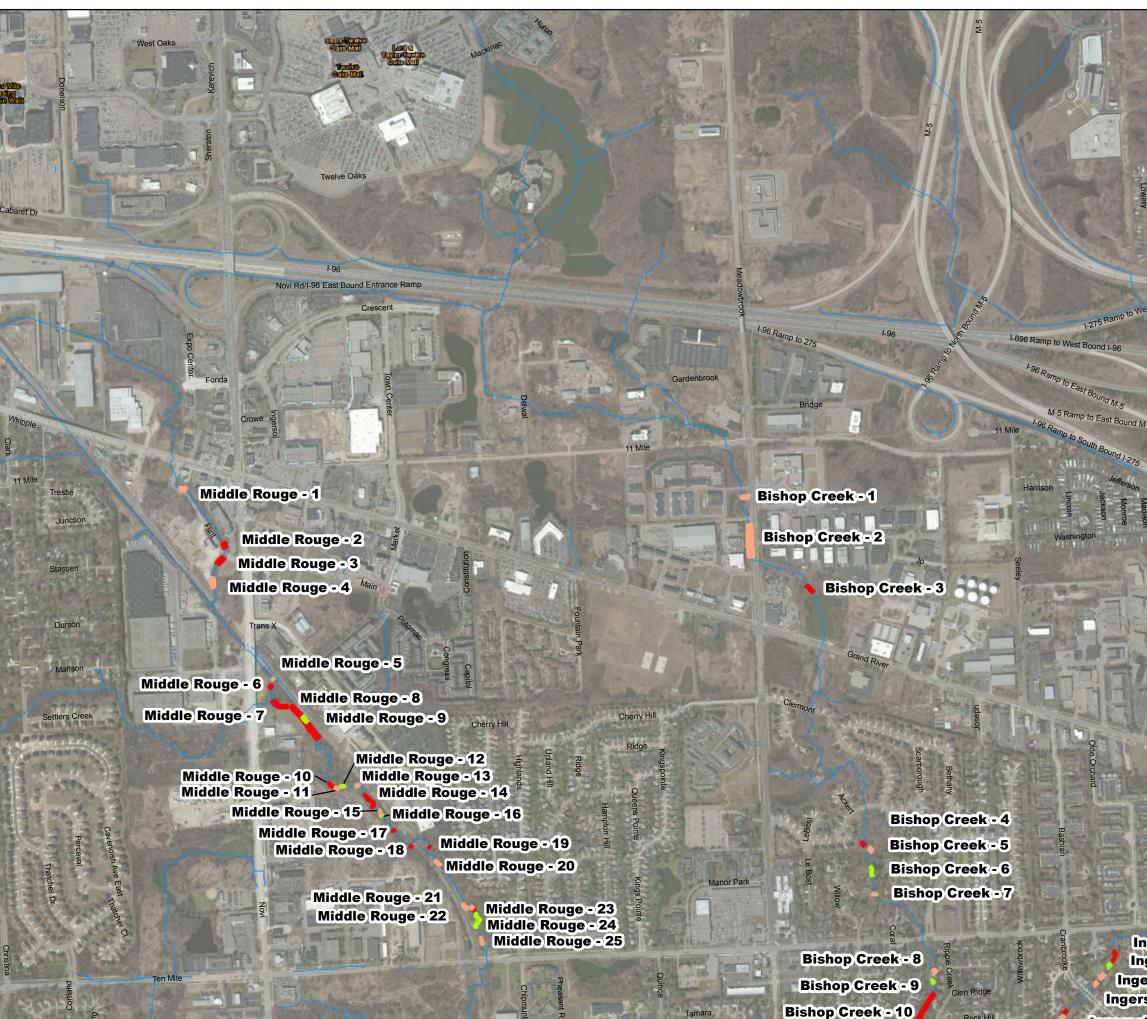
If you have any questions regarding the contents of this letter, please contact Evan Corbin at 734-272-0761 or Marty Boote at 734-282-0857.

Respectfully submitted,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

N. From Colin

Evan Corbin Associate Engineer


Marty Boote

Environmental Scientist



# **APPENDIX A**

| Site     | Bank          | Length<br>(ft) | Photos             | Bank<br>Height (ft) | Root Depth<br>(ft) | Root<br>Density (%) | Bank<br>Angle (°) | Surface<br>Protection (°) | BEHI<br>Rating | BEHI<br>Category       | Stabilization Options <sup>1</sup>      | Estimated Cost       |
|----------|---------------|----------------|--------------------|---------------------|--------------------|---------------------|-------------------|---------------------------|----------------|------------------------|-----------------------------------------|----------------------|
|          |               |                |                    |                     |                    |                     | Bish              | op Creek                  |                |                        |                                         | 1                    |
| 1        | Left          | 20             | 146-153            | 3.0                 | 2.0                | 35                  | 100               | 20                        | 23.5           | High                   | RR+VMSE                                 | \$9,000              |
| 2        | Both          | 350            | 157-163            | 1.3                 | 0.4                | 60                  | 90                | 30                        | 23.5           | High                   | SF+RR+VMSE                              | \$307,000            |
| 3        | Both          | 85             | 170-176            | 3.0                 | 0.8                | 30                  | 110               | 30                        | 29.5           | Very High              | RR+VMSE                                 | \$75,000             |
| 4        | Right         | 50             | 178-189            | 7.0                 | 0.5                | 10                  | 80                | 50                        | 29.0           | Very High              | V + CW/GW                               | \$25,000             |
| 5        | Both          | 60             | 190-193            | 2.5                 | 1.0                | 10                  | 90                | 40                        | 27.0           | High                   | SF+VMSE+V                               | \$30,000             |
| 6        | Left          | 100            | 194-198            | 4.5                 | 2.5                | 65                  | 85                | 70                        | 16.0           | Moderate               | RR+VMSE                                 | \$44,000             |
| 7        | Left          | 15             | 199-200            | 4.0                 | 2.0                | 30                  | 95                | 30                        | 27.5           | High                   | LS/JP+RR                                | \$4,000              |
| 8        | Left          | 45             | 201-204            | 5.5                 | 0.5                | 20                  | 85                | 35                        | 27.5           | High                   | LS/JP+CW/GW                             | \$15,000             |
| 9        | Right<br>Both | 45<br>410      | 205-209<br>210-241 | 4.5<br>4.0          | 2.5<br>2.0         | 60<br>15            | 95<br>115         | 60<br>20                  | 17.5<br>29.0   | Moderate<br>Very High  | VMSE<br>RR + VMSE                       | \$9,000<br>\$332,000 |
| 10       | Right         | 410            | 245-250            | 3.5                 | 1.5                | 30                  | 90                | 20                        | 29.0           | High                   | LS/JP+VMSE                              | \$9,000              |
| 11       | Right         | 75             | 243-230            | 5.5                 | 1.5                | 50                  | 70                | 20                        | 21.5           | Ingn                   | Bishop Creek =                          | \$9,000<br>\$859,000 |
|          |               |                |                    |                     |                    |                     | Inger             | sol Creek                 |                |                        | Dishop Creek -                          | \$057,000            |
| 1        | Left          | 110            | 251-257            | 5.5                 | 1.5                | 30                  | 100               | 10                        | 31.0           | Very High              | SF + LS/JP + RR + VMSE                  | \$49,000             |
| 2        | Right         | 40             | 259-262            | 5.8                 | 1.5                | 70                  | 70                | 75                        | 18.0           | Moderate               | RR+CW/GW                                | \$23,000             |
| 3        | Right         | 65             | 263-267            | 5.3                 | 2.5                | 40                  | 90                | 40                        | 23.5           | High                   | RR + VMSE/CW/GW                         | \$32,000             |
| 4        | Left          | 40             | 268-272            | 5.5                 | 1.5                | 25                  | 80                | 35                        | 26.0           | High                   | RR + VMSE/CW/GW                         | \$20,000             |
| 5        | Right         | 65             | 273-275            | 7.0                 | 1.0                | 20                  | 85                | 10                        | 31.0           | Very High              | RR + V + VMSE/CW/GW                     | \$42,000             |
| 6        | Left          | 60             | 276-279            | 6.0                 | 3.0                | 30                  | 80                | 60                        | 22.0           | High                   | VMSE/CW/GW                              | \$17,000             |
| 7        | Right         | 120            | 280-284            | 2.5                 | 1.5                | 25                  | 90                | 30                        | 25.5           | High                   | RR+VMSE                                 | \$53,000             |
| 8        | Left          | 50             | 287-290            | 4.5                 | 3.0                | 80                  | 110               | 70                        | 17.5           | Moderate               | LS/JP+RR                                | \$14,000             |
| 9        | Left          | 30             | 291-294            | 2.5                 | 0.5                | 10                  | 80                | 30                        | 29.5           | Very High              | LS/JP+RR+VMSE                           | \$13,000             |
| 10       | Right         | 215            | 295-302            | 3.0                 | 1.5                | 75                  | 90                | 75                        | 19.5           | Moderate               | RR+VMSE                                 | \$94,000             |
| 11       | Right         | 65             | 303-306            | 2.5                 | 1.5                | 70                  | 95                | 80                        | 17.5           | Moderate               | RR+VMSE                                 | \$29,000             |
| 12       | Right         | 140            | 307-310            | 3.0                 | 1.0                | 60                  | 90                | 70                        | 19.5           | Moderate               | RR+VMSE                                 | \$61,000             |
|          |               |                |                    |                     |                    |                     |                   |                           |                |                        | Ingersol Creek =                        | \$447,000            |
|          |               |                |                    |                     |                    | Mi                  | ddle Brai         | nch Rouge Riv             | ver            |                        |                                         |                      |
| 1        | Right         | 65             | 317-322            | 8.0                 | 3.0                | 30                  | 110               | 30                        | 27.5           | High                   | LS/JP+RR+CW/GW                          | \$46,000             |
| 2        | Left          | 50             | 327-333            | 3.5                 | 0.5                | 5                   | 80                | 10                        | 34.0           | Very High              | RR+V                                    | \$19,000             |
| 3        | Left          | 100            | 334-346            | 10.0                | 3.0                | 20                  | 85                | 20                        | 28.0           | Very High              | RR + V + VMSE/CW/GW                     | \$73,000             |
| 4        | Both          | 100            | 347-354            | 4.5                 | 1.0                | 40                  | 85                | 40                        | 24.0           | High                   | V + VMSE/CW/GW                          | \$51,000             |
| 5        | Left          | 10             | 355-357            | 3.0                 | 1.0                | 60                  | 90                | 10                        | 25.0           | High                   | VMSE+V                                  | \$7,000              |
| 6        | Right         | 35<br>180      | 358-363            | 10.0<br>10.0        | 2.0<br>2.0         | 25<br>10            | 80<br>95          | 25<br>5                   | 28.0<br>34.0   | Very High              | LS/JP+VMSE/CW/GW                        | \$16,000<br>\$86,000 |
| 8        | Right<br>Left | 440            | 364-378<br>379-382 | 3.5                 | 0.3                | 10                  | 93<br>110         | 15                        | 34.0           | Very High<br>Very High | SF + LS/JP + RR + VMSE + V<br>RR + VMSE | \$178,000            |
| 9        | Right         | 70             | 383-387            | 8.0                 | 6.0                | 70                  | 65                | 75                        | 14.0           | Moderate               | RR+CW/GW                                | \$178,000            |
| 10       | Right         | 70             | 388-392            | 3.5                 | 1.0                | 20                  | 80                | 30                        | 28.0           | Very High              | RR+VMSE                                 | \$31,000             |
| 11       | Right         | 40             | 393-399            | 6.0                 | 3.0                | 50                  | 115               | 50                        | 23.5           | High                   | RR+V+CW/GW                              | \$29,000             |
| 12       | Left          | 50             | 400-403            | 4.5                 | 3.0                | 60                  | 100               | 70                        | 17.5           | Moderate               | RR+VMSE                                 | \$22,000             |
| 13       | Left          | 45             | 404-407            | 6.0                 | 2.0                | 20                  | 80                | 50                        | 24.0           | High                   | VMSE/CW/GW                              | \$13,000             |
| 14       | Left          | 165            | 408-412            | 7.0                 | 2.0                | 15                  | 75                | 15                        | 29.0           | Very High              | RR + CW/GW                              | \$105,000            |
| 15       | Left          | 40             | 413-416            | 13.0                | 3.0                | 30                  | 80                | 45                        | 26.0           | High                   | RR + CW/GW                              | \$39,000             |
| 16       | Right         | 20             | 417-420            | 15.0                | 10.0               | 70                  | 75                | 70                        | 14.0           | Moderate               | RR+CW/GW                                | \$22,000             |
| 17       | Both          | 30             | 424-427            | 4.5                 | 1.5                | 5                   | 80                | 10                        | 30.5           | Very High              | LS/JP+RR+VMSE                           | \$27,000             |
| 18       | Right         | 20             | 428-431            | 5.0                 | 0.5                | 15                  | 80                | 25                        | 31.0           | Very High              | LS/JP+V+CW/GW                           | \$11,000             |
| 19       | Left          | 30             | 432-436            | 3.0                 | 0.8                | 15                  | 90                | 20                        | 31.0           | Very High              | LS/JP+V                                 | \$7,000              |
| 20       | Right         | 75             | 437-440            | 3.0                 | 1.5                | 15                  | 85                | 20                        | 27.5           | High                   | LS/JP+RR                                | \$21,000             |
| 21       | Right         | 80             | 441-444            | 4.0                 | 2.0                | 40                  | 75                | 40                        | 20.0           | High                   | RR+VMSE                                 | \$35,000             |
| 22       | Left          | 35             | 445-449            | 4.0                 | 2.0                | 20                  | 100               | 25                        | 27.5           | High                   | RR+VMSE+V                               | \$21,000             |
| 23       | Right         | 25             | 450-454            | 3.5                 | 1.0                | 25                  | 80                | 25                        | 28.0           | Very High              | RR+VMSE                                 | \$11,000             |
| 24       | Both          | 150            | 455-466            | 4.0                 | 2.0                | 65                  | 70                | 70                        | 16.0           | Moderate               | LS/JP+RR+VMSE+V                         | \$139,000            |
| 25       | Right         | 80             | 467-475            | 3.0                 | 1.0                | 30                  | 90                | 30                        | 27.5           | High<br>Marry High     | RR+VMSE                                 | \$35,000             |
| 26       | Both          | 1000           | 476-504            | 3.5                 | 0.5                | 20                  | 95                | 30                        | 31.0           | Very High              | RR + VMSE + Vx4                         | \$832,000            |
| 27       | Left          | 120            | 672-679            | 6.0<br>5.0          | 5.0                | 60                  | 65<br>75          | 85                        | 13.0           | Moderate               | RR+CW/GW                                | \$70,000             |
| 28<br>29 | Left          | 190<br>140     | 680-685<br>686-694 | 5.0<br>4.0          | 2.5                | 15                  | 75<br>100         | 35<br>65                  | 18.5           | Moderate               | LS/JP+VMSE/CW/GW                        | \$48,000<br>\$63,000 |
| 29<br>30 | Left          | 140<br>80      | 686-694<br>695-698 |                     | 3.5                | 65<br>50            |                   | 65<br>50                  | 14.5           | Moderate               | RR+VMSE/CW<br>SF+RR+VMSE                | \$63,000<br>\$35,000 |
| 30       | Right<br>Left | 100            | 695-698<br>699-704 | 2.5<br>3.0          | 1.5<br>2.0         | 50<br>70            | 80<br>100         | 50<br>70                  | 17.0<br>16.5   | Moderate<br>Moderate   | RR+VMSE                                 | \$35,000<br>\$44,000 |
| 31       | Left          | 80             | 705-711            | 3.0                 | 1.5                | 10                  | 60                | 25                        | 10.5           | Low                    | LS/JP+VMSE                              | \$17,000             |
| 33       | Both          | 70             | 712-721            | 2.5                 | 1.5                | 30                  | 100               | 40                        | 18.5           | Moderate               | SF+RR+VMSE                              | \$61,000             |
|          | 2000          | , ,            | , /                | 2.0                 | 1.5                | 50                  | 100               | 10                        | 10.5           | mourau                 | Middle Branch Rouge River =             | \$2,263,000          |
|          |               |                |                    |                     |                    |                     |                   |                           |                |                        |                                         | <i>~=,=00,000</i>    |



ngersol-6

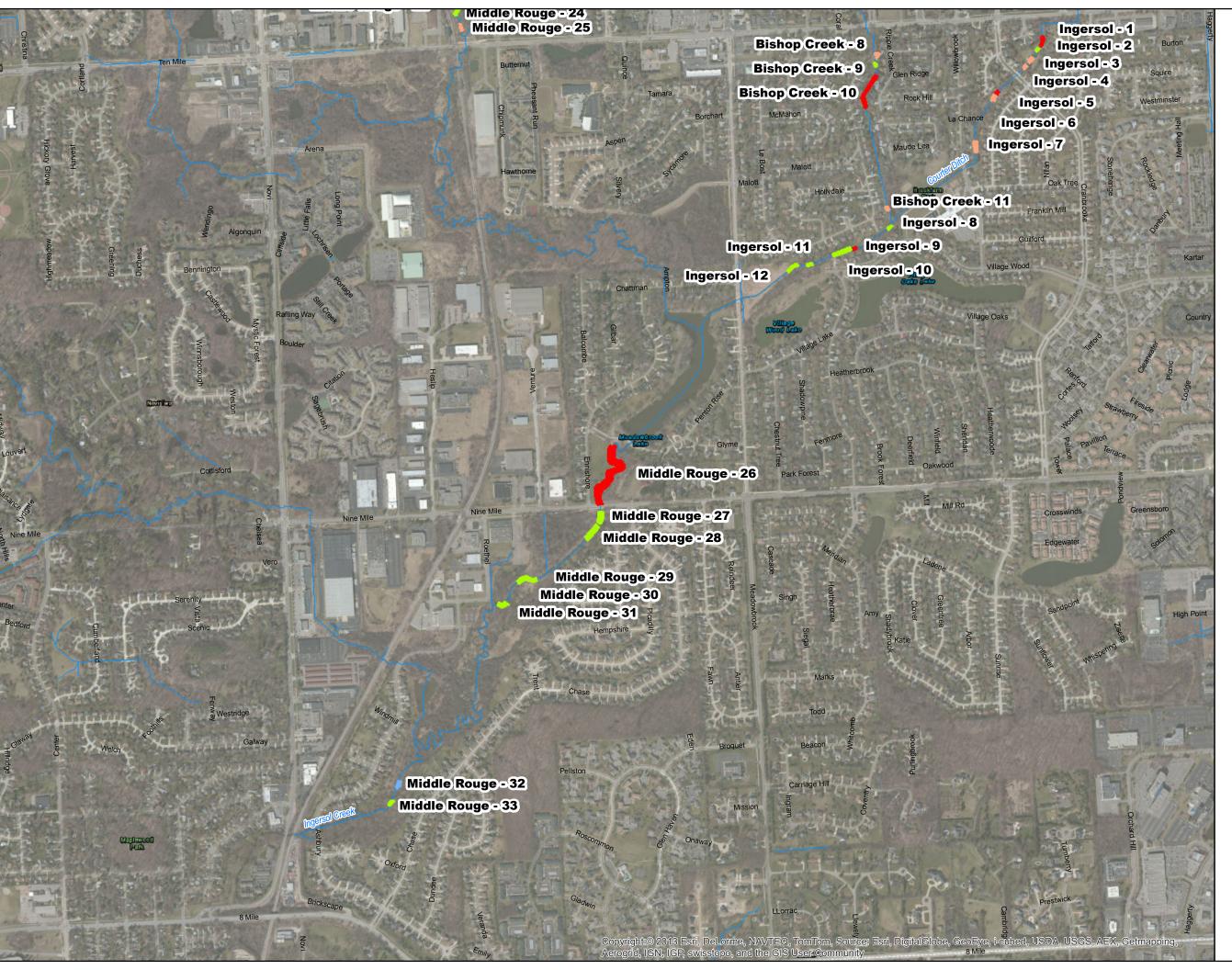




### City of Novi Stormwater Master Plan **BEHI Results**

Figure 1






2,200

Feet

1,100

550





### City of Novi Stormwater Master Plan BEHI Results

Figure 2





0

550

2,200

Feet

1,100

## **APPENDIX B**

#### **Streambank Stabilization Techniques**

The following streambank stabilization technique descriptions represent a compilation of information from a variety of sources, primarily the national Cooperative Highway Research Program Environmentally Sensitive Channel and Bank Protection Measures 1, and ECT's professional experience applying the techniques under a variety of site conditions. A basic description of each technique is provided in addition to a statement regarding the general applicability of each technique to the impacted reaches. Typical details are also attached.

#### Slope Flattening

Flattening or bank reshaping stabilizes an eroding streambank by reducing its slope angle or gradient. Slope flattening is usually done in conjunction with other bank protection treatments, including installation of toe protection, placement of bank armor, re-vegetation or erosion control, and/or installation of drainage measures. Flattening or gradient reduction can be accomplished in several ways: 1) by removal of material near the crest, 2) by adding soil or fill at the bottom, or 3) by placing a toe structure at the bottom and adding a sloping fill behind it. Right-of-way constraints may limit or preclude the first two alternatives because both entail either moving the crest back or extending the toe forward.

#### Live Staking/Joint Planting

Live stakes are very useful as a revegetation technique, a soil reinforcement technique, and as a way to anchor erosion control materials. They are usually cut from the stem or branches of willow species and the stakes are typically 0.5-1.0 m (1.5 - 3.3 ft) long. The portion of the stem in the soil will grow roots and the exposed portion will develop into a bushy riparian plant. This technique is referred to as Joint Planting when the stakes are inserted into or through riprap. Live staking is a very flexible technique because it can be used to establish vegetation under a variety of conditions, particularly when excavation or the streambank is not desirable.

Live staking is an excellent means of using live plant materials to establish permanent vegetation on streambanks. As noted with other techniques, vegetation alone may not provide sufficient stabilization, but live staking is applicable when combined with other techniques.

#### Vegetated Riprap Revetment/Riprap Toe

Riprap revetment is a resistive technique of continuous bank protection consisting of riprap or natural weathered stone placed longitudinally along the toe of the streambank only. Riprap toes usually require much less bank disturbance and the bank landward of the toe may be sloped and/or revegetated by planting or through natural succession. A variety of stone sizes can be sued depending on site-specific flow velocities. Natural weathered stone is sometime more desirable due to its natural appearance, but typically requires large rock sizes due to its tendency to tumble and dislodge from the revetment face. Natural stone is often less available and more expensive to obtain as well. Crushed rock such as limestone is readily available in some areas, is less expensive, and tends to "lock" together within the revetment face better than weathered natural stone.

<sup>&</sup>lt;sup>1</sup> McCullah, J. and D. Gray. 2005. Environmentally Sensitive Channel and Bank Protection Measures. National Cooperative Highway Research Program Report #544, Transportation Research Board of the National Academies.

Two configurations have been used: (1), an ordinary riprap blanket is covered with a layer of soil 30-60 cm (1-2 ft) thick from the top of the revetment down to base flow elevation, or (2), a crown cap of soil and plant material is placed over a riprap toe running along the base of a steep bank, effectively reducing bank angle. Soils used for fill should not be highly erosive. A variety of methods may be used to establish plant materials including hydroseeding, seeding and mulching, sodding, and incorporation of willow cuttings or root stock in the fill materials.

Riprap toes protect streambanks via armoring where streambank erosion most often occurs and causes total bank failure. This technique requires much less riprap than conventional bank revetments that extend up the bank a considerable distance from the toe or cover the entire bank. This technique also has less ecological impact than other types of hard armoring.

#### Vegetated Mechanically Stabilized Earth (MSE)

This technique consists of soil wrapped in natural fabric, e.g., coir, or synthetic geotextiles (Turf Reinforcement Mats (TRMs) or Erosion Control Blankets (ECBs)) or geogrids. The fabric wrapping provides the primary soil reinforcement; however, internal geogrid membranes placed at vertical intervals between the layers provide additional lateral soil reinforcement. The durability of this structure varies widely and is dictated by the material used to form the soil encapsulation. Materials vary from light-weight, 100% biodegradable fabrics to rigid synthetic geogrids and facades.

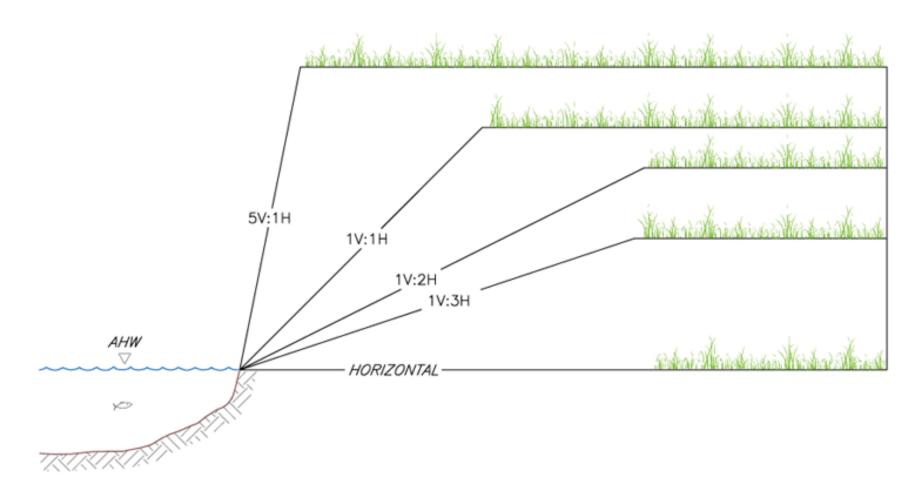
This technique presents a lot of flexibility in terms of construction options and can be designed to meet a range of durability and environmental requirements. MSEs are an effective means of stabilizing streambanks while creating a near vertical face where space constraints require such.

#### Vanes

Vanes are deflective structures constructed of large woody debris or rock. They differ from transverse structures like spur dikes in that they are angled upstream into the flow at 20 to 30 degrees. Generally, two or three vanes are constructed along the outer bank of a bend in order to redirect flows near the bank to the center of the channel. Typically, vanes project 1/3 of the stream width. The riverward tips are at channel grade, and the crests slope upward to reach bankfull stage elevation at the streambank. Vanes are discontinuous; that is, portions of the bank between the structures are often not treated. Vanes can create habitat by increasing hydraulic diversity and generating streambed scour.

Vanes are not well suited for incised stream channels because high flows contained in the incised channel at flows exceeding bankfull tend to erode streambanks above the elevation of the vanes and cause flanking. However, vanes can be effective in reaches with low bank heights.

#### Cribwalls


A cribwall is a gravity retaining structure consisting of a hollow, box-like inter-locking arrangement of structural beams (usually wood). The interior of the cribwall is filled with rock or soil. In conventional cribwalls, the structural members are fabricated from concrete, wood logs, and dimensioned timbers (usually treated wood). In live cribwalls, the structural members are usually untreated log or timber members. The structure is filled with a suitable backfill material and live branch cuttings are inserted through openings between logs at the front of the structure

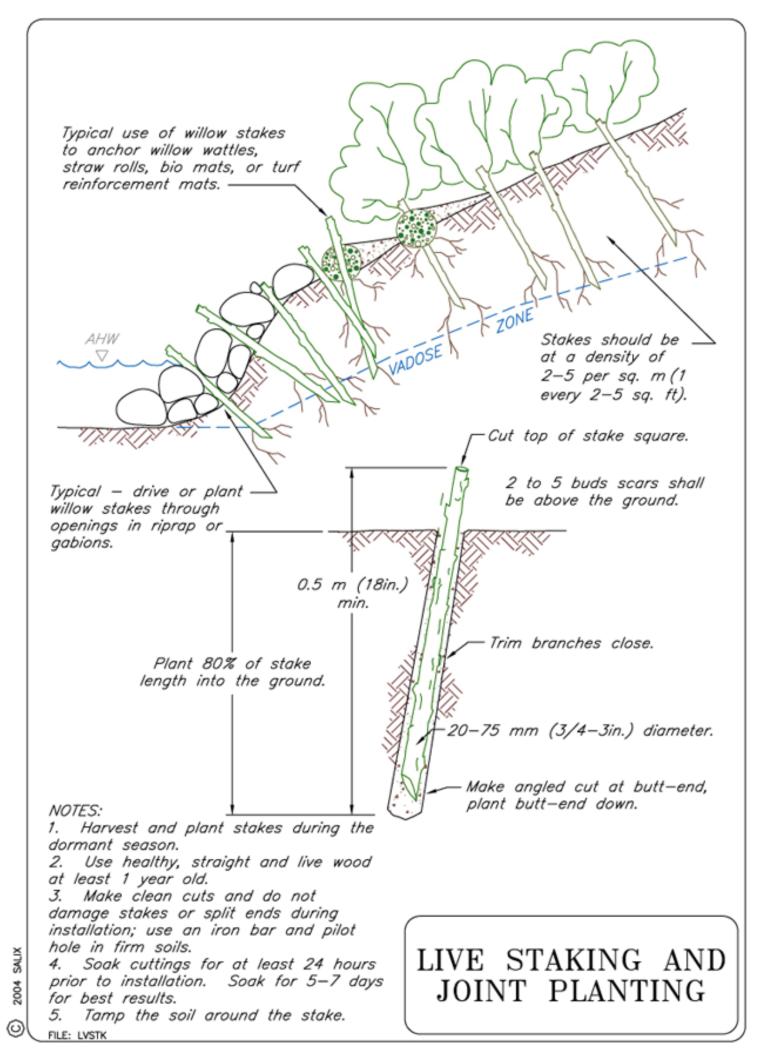
and imbedded in the crib fill. These cuttings eventually root inside the fill and the growing roots gradually permeate and reinforce the fill within the structure.

Cribwalls are an effective means of stabilizing stream banks while creating a vertical or near vertical face where space constraints require such. They do have height limitations, and, if constructed from wood, eventually decompose, leaving vegetation alone to stabilize the streambank.

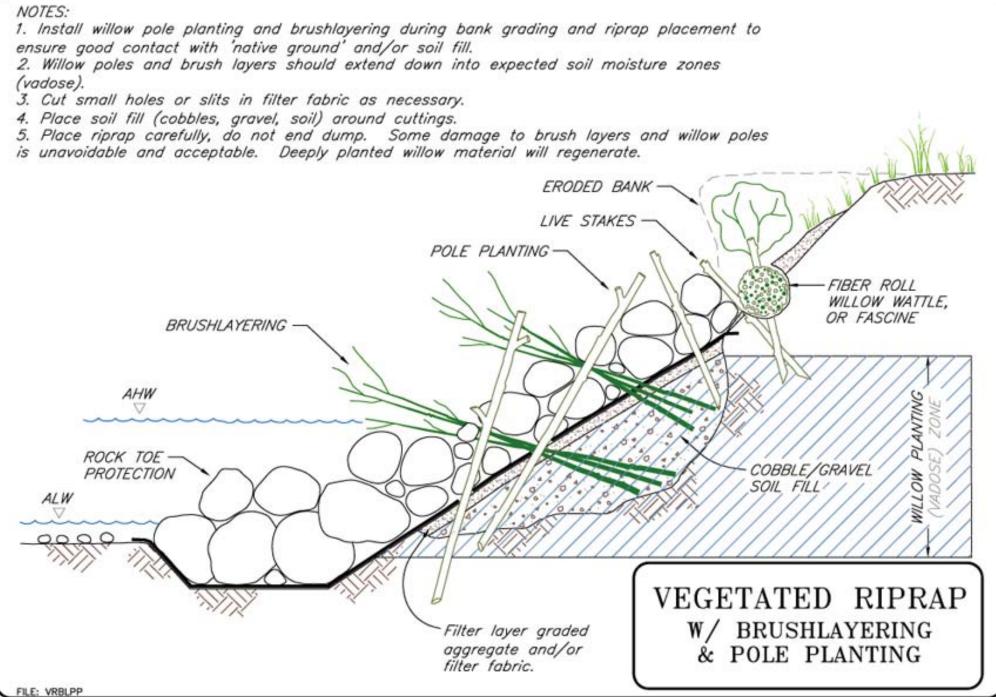
#### Geocell Walls

Geocell walls are aggregate or soil filled synthetic cellular containment systems. They can be based solely on gravity or reinforced with geogrid. The leading edge cell can be filled with soil and vegetated. One advantage of geocell walls is that when filled with aggregate and manufactured with perforations, they drain readily after being wetted by high water, lending to their stability.

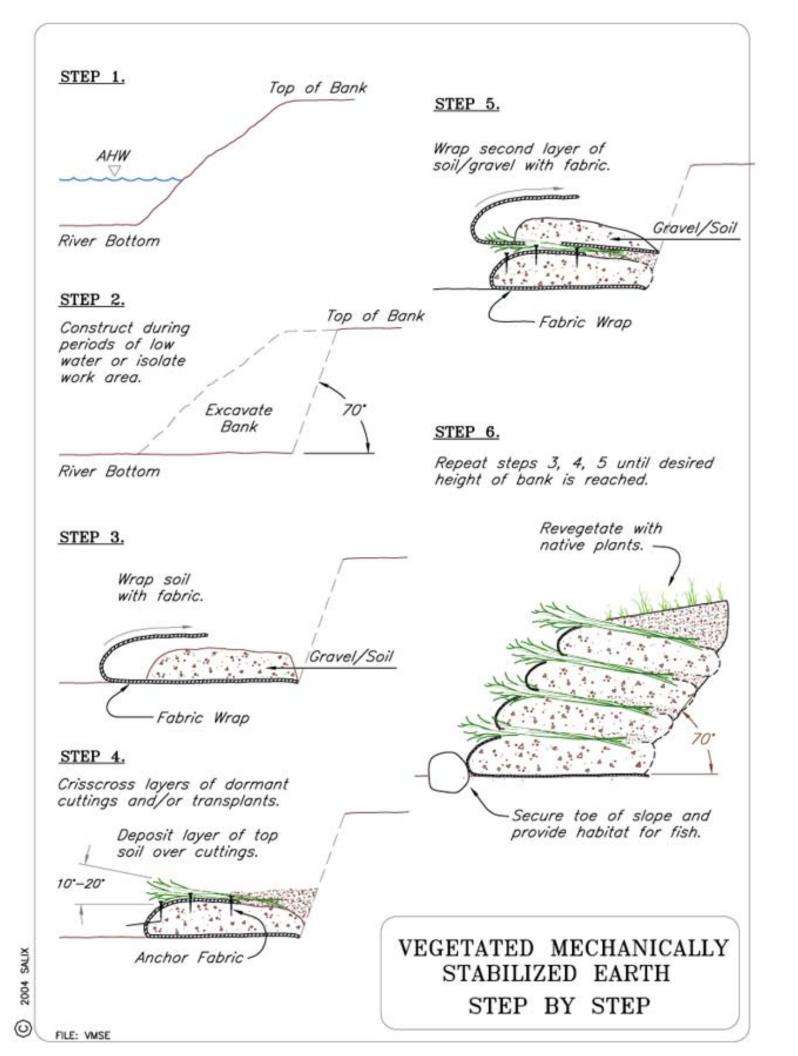


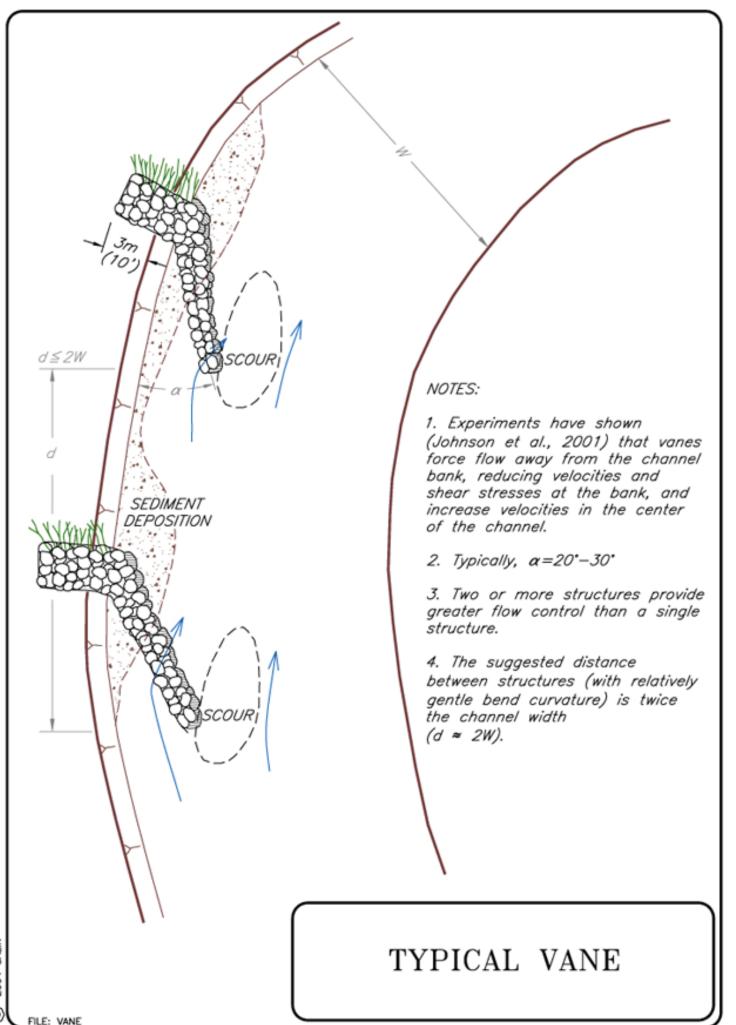

- 1V:3H Maximum suggested slope angle for establishing plantings or seedlings, when used alone.
- •1V:3H IV:2H Optimal slope angle range for soil bioengineering.
- \*1V:3H or steeper Roughen stairstep or terrace slope if planting.
- 1V:2H Maximum suggested slope angle for unreinforced fills.
- 1V:2H or steeper Biotechnical techniques (combination of stabilization structures, soil bioengineering and geotechnical methods) often needed.
- •1V:1H Maximum suggested slope angle for unreinforced cuts in clay soil.
- \*5V:1H Typical face angle for rockeries, gabions, crib walls, etc. FILE: SFLT

## SLOPE FLATTENING


(adapted from FISRWG, 1998)

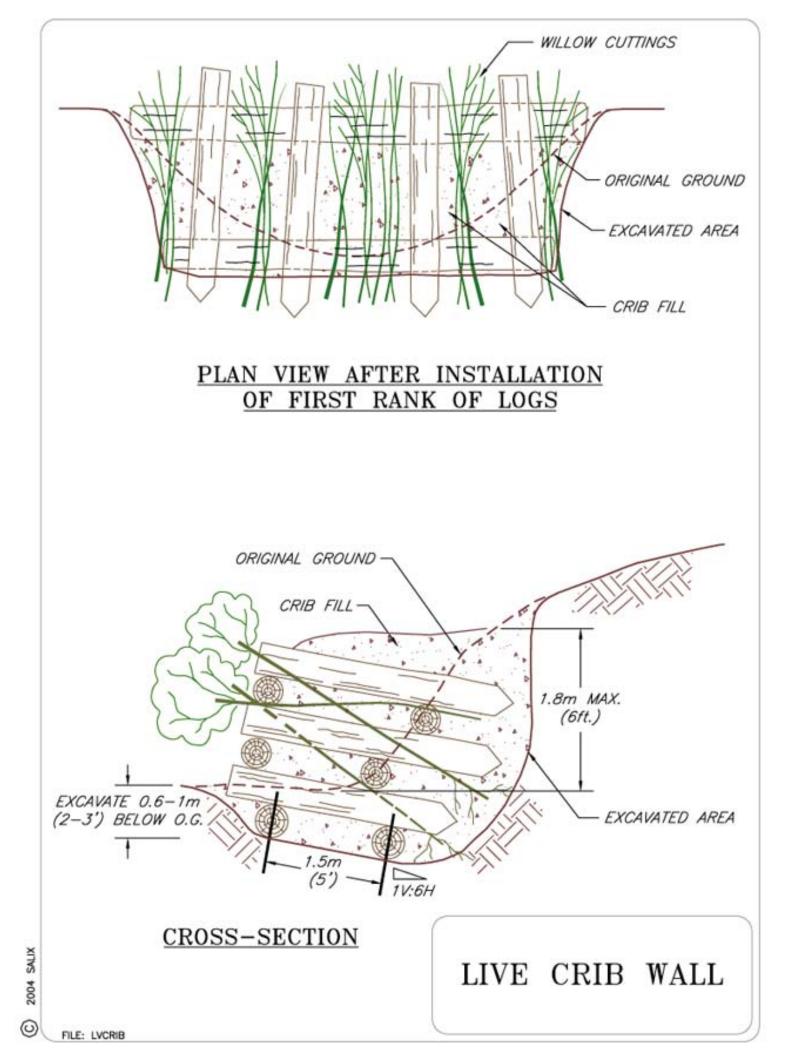
2004 SALIX

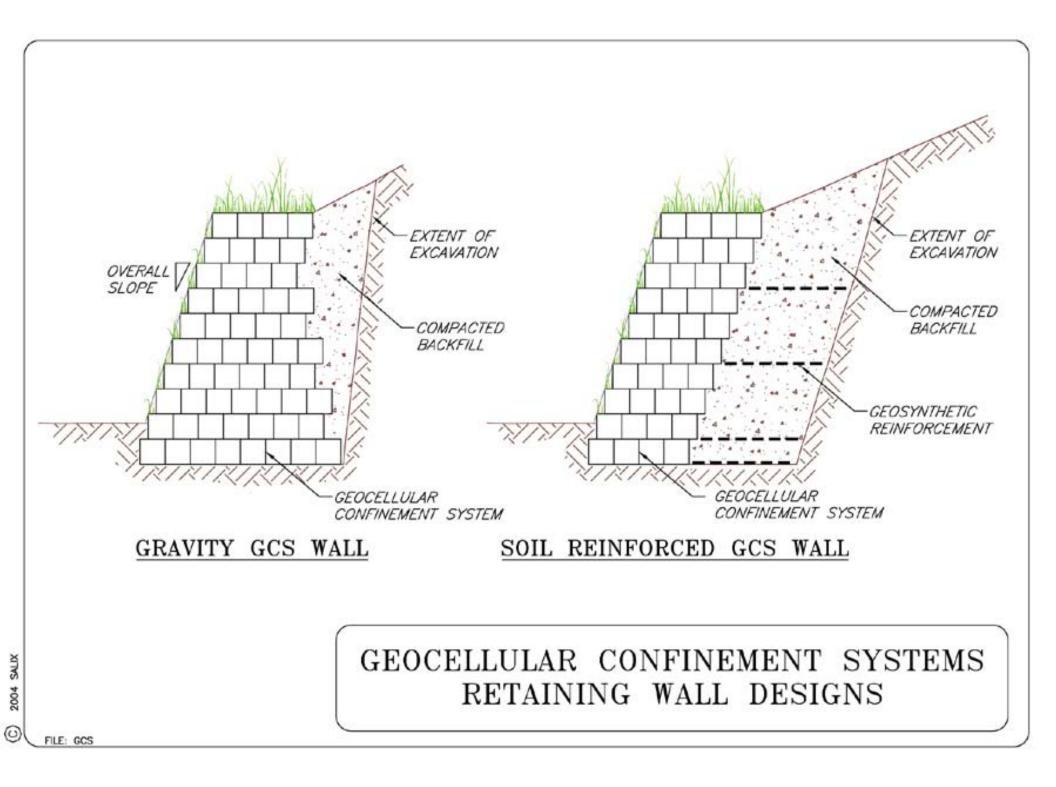

0









SALIX 








C) 2004 SALIX







Outside meander erosion, residential area, Bank Height = ~ 7', BEHI = 29/Very High

Location: Bishop Creek

Site: 4

Picture: 187



Toe Erosion, downstream end of Site 4

Site: 4

Picture: 182

SPALDING DEDECKER ASSOCIATES, INC.





Upper Bank Slope Failure, looking downstream, Bank Height = ~ 5.5', BEHI = 31/Very High

Location: Ingersol Creek

Site: 1

Picture: 251



Undercutting Bank, looking upstream, sediment deposit

Site: 1

Picture: 256

SPALDING DEDECKER ASSOCIATES, INC.





Toe Scour and Bank Failure, Bank Height = ~ 7', BEHI = 31/Very High

Location: Ingersol Creek

Site: 5

Picture: 275



**Outside Meander Erosion** 

#### Location: Ingersol Creek

Site: 5

Picture: 273

SPALDING DEDECKER ASSOCIATES, INC.





Outside Meander Erosion, looking downstream, Bank Height = ~ 10', BEHI = 34/Very High Location: Middle Branch Rouge River Site: 7

Picture: 365



Gully Erosion along Site 7

Location: Middle Branch Rouge River

Site: 7



Active Bank Erosion at downstream end of Site 7

Location: Middle Branch Rouge River

SPALDING DEDECKER ASSOCIATES, INC.

Engineering Consultants | Infrastructure | Land Development | Surveying

Site: 7



Picture: 373

Picture: 369



Bank Failure, Bank Height = ~ 3.5', BEHI = 34/Very High

Location: Middle Branch Rouge River

Site: 8

Picture: 379



Undercutting Bank, looking downstream

| Location: Middle Branch Rouge River | Site: 8                                  | Picture: 381                 |
|-------------------------------------|------------------------------------------|------------------------------|
| SPALDING DEDECKER ASSOCIATES, INC.  | Engineering Consultants   Infrastructure | Land Development   Surveying |

Streambank Assessment City of Novi





Undercutting Bank, Bank Height = ~ 7', BEHI = 29/Very High

Location: Middle Branch Rouge River

Site: 14

Picture: 408



Mass Wasting at Site 14

| Location: Middle Branch Rouge River | Site: 14                                      | Picture: 411               |
|-------------------------------------|-----------------------------------------------|----------------------------|
| SPALDING DEDECKER ASSOCIATES, INC.  | Engineering Consultants   Infrastructure   La | nd Development   Surveying |





Outside Meander Erosion & Undercutting Bank, Bank Height = ~ 3.5', BEHI = 31/Very High

Location: Middle Branch Rouge River

Site: 26

Picture: 476



Riprap in channel showing pre-erosion bank location (looking downstream)

Site: 26

Picture: 481

SPALDING DEDECKER ASSOCIATES, INC.





Active Bank Failure and Slumping

Location: Middle Branch Rouge River

Site: 26

Picture: 483



Active Bank Failure and Slumping

|                                     | 1 3                                      |                              |  |
|-------------------------------------|------------------------------------------|------------------------------|--|
| Location: Middle Branch Rouge River | Site: 26                                 | Picture: 501                 |  |
| SPALDING DEDECKER ASSOCIATES, INC.  | Engineering Consultants   Infrastructure | Land Development   Surveying |  |

