CITY of NOVI CITY COUNCIL

Agenda Item G
November 8, 2010

SUBJECT: Approval of Traffic Control Orders 10-49, 10-50, and 10-51 to establish a permanent three-way stop control at the intersection of South Lake Drive, Old Novi Road, and 13 Mile Road as part of the intersection improvement project, which includes removal of the existing traffic signal.

SUBMITTING DEPARTMENT: Department of Public Services, Engineering Division

CITY MANAGER APPROVAL

BACKGROUND INFORMATION:
The existing traffic signals at the intersection of South Lake Drive, Old Novi Road and 13 Mile Road are slated for removal as part of a project that includes:

- Removal of the existing but now unwarranted traffic signal (to be replaced with the three-way stop that is currently in place).
- Reconfiguration of the South Lake Drive approach to better accommodate large vehicles (e.g., school buses and fire trucks).
- Installation of a sidewalk to fill in a gap along the south side of 13 Mile between the intersection and Martin Ave.

The existing signals were placed in flash mode in late August 2010 as required by the Michigan Manual of Uniform Traffic Control Devices (MMUTCD) as one of the steps toward decommissioning a signal (see attached August 24, 2010 memo). At that time, stop signs were installed at all three legs of the intersection and a temporary traffic control order for the stop signs was signed by the traffic engineer. Staff is requesting approval of the permanent traffic control order at this time, as the temporary traffic control order is only valid for 90 days and will expire on November 24, 2010.

A public information meeting was held on October 27, 2010 and was attended by four people representing three properties (see attached October 28,2010 memo). Staff received valuable feedback that will be used to finalize the design of the project. While there was opposition from the four people to the removal of the signal (based on the perception that it would lead to increased traffic on South Lake Drive), staff explained that the traffic signal is no longer warranted and is not intended or recognized as a method of traffic calming, and therefore should be removed. Feedback was also solicited in August when signs were posted (as required by MMUTCD) informing the public that the signal was under review. At that time we received 15 calls, of which 11 callers wanted the signal removed.

The final design of the project is in progress and will be posted on the project webpage (www.cityofnovi.org/southlake) when complete. Construction is anticipated to begin in spring 2011 with complete in summer 2011.

RECOMMENDED ACTION: Approval of Traffic Control Orders 10-49, 10-50, and 10-51 to establish a permanent three-way stop control at the intersection of South Lake Drive, Old Novi Road, and 13 Mile Road as part of the intersection improvement project, which includes removal of the existing traffic signal.

	1	2	Y	N
Mayor Landry				
Mayor Pro Tem Gatt				
Council Member Crawford				
Council Member Fischer				

	1	2	\mathbf{Y}	N
Council Member Margolis				
Council Member Mutch				
Council Member Staudt				

CITY OF NOVI
 TRAFFIC CONTROL ORDER

| | SPEED |
| :--- | :--- | :--- |
| PARKING | |
| OTHER | |\quad DATE OF ORDER: \quad August 26,2010

PURSUANT TO CHAPTER NO. 33 OF THE CODE OF ORDINANCES OF THE CITY OF NOVI, MICHIGAN, SAME BEING THE UNIFORM TRAFFIC CODE FOR CITIES, TOWNSHIPS AND VILLAGES OF MICHIGAN AND IN THE INTEREST OF PUBLIC SAFETY AND CONVENIENCE THE FOLLOWING TRAFFIC CONTROL ORDER IS HEREBY ISSUED BY BRIAN COBURN, SENIOR CIVIL ENGINEER, DULY AUTHORIZED AS TRAFFIC ENGINEER, BY SEC. 33.141 OF THE AFORESAID CHAPTER.

ISSUANCE OF THIS TRAFFIC CONTROL ORDER WAS PRECEDED BY STUDY AND INVESTIGATION OF TRAFFIC CONDITIONS ON THE FOLLOWING PUBLIC ROAD OR ROADS IN THE CITY OF NOVI, MICHIGAN.

SOUTH LAKE DRIVE

AND AFTER SAID INVESTIGATION, IT IS HEREBY ORDERED AND DIRECTED THAT THE DEPARTMENT OF PUBLIC SERVICES ERECT AND MAINTAIN THE STOP SIGN (S) IN ACCORDANCE WITH THE MICHIGAN MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES AS REQUIRED BY SEC. 33.217 OF THE AFORESAID CHAPTER, SAID SIGNS TO GIVE NOTICE OF THE FOLLOWING DETERMINATION:

WESTBOUND SOUTH LAKE DRIVE TO STOP AT OLD NOVI RD/13 MILE ROAD

Brian Coburn, P.E. - Traffic Engineer
Dated: August 26,2010

APPROVED BY CITY COUNCIL

TRAFFIC CONTROL ORDER NUMBER 10-49 HAVING BEEN PRESENTED TO THE COUNCIL OF THE CITY OF NOVI, MICHIGAN FOR STUDY AND APPROVAL, IS HEREBY APPROVED AND IT IS HEREBY ORDERED AND DIRECTED THAT THIS ORDER BE FILED IN THE OFFICE OF THE CITY CLERK AND A COPY THEREOF IN THE OFFICE OF THE CHIEF OF POLICE OF SAID CITY.

IT IS FURTHER ORDERED AND DIRECTED THAT THIS ORDER SHALL BECOME EFECTIVE UPON BEING FILED WITH THE CLERK AND UPON ERECTION OF ADEQUATE SIGNS GIVING NOTICE OF THE EXISTENCE OF AFORESAID,

WESTBOUND SOUTH LAKE DRIVE TO STOP AT OLD NOVI RD/13 MILE ROAD

ADOPTED AT THE REGULAR MEETING OF CITY COUNCIL ON \qquad $-$

By:
David Landry, Mayor

By:
Maryanne Cornelius, Clerk
\qquad SPEED PARKING OTHER

DATE OF ORDER:

CONTROL NUMBER: $10-50$

PURSUANT TO CHAPTER NO. 33 OF THE CODE OF ORDINANCES OF THE CITY OF NOVI, MICHIGAN, SAME BEING THE UNIFORM TRAFFIC CODE FOR CITIES, TOWNSHIPS AND VILLAGES OF MICHIGAN AND IN THE INTEREST OF PUBLIC SAFETY AND CONVENIENCE THE FOLLOWING TRAFFIC CONTROL ORDER IS HEREBY ISSUED BY BRIAN COBURN, SENIOR CIVIL ENGINEER, DULY AUTHORIZED AS TRAFFIC ENGINEER, BY SEC. 33.141 OF THE AFORESAID CHAPTER.

ISSUANCE OF THIS TRAFFIC CONTROL ORDER WAS PRECEDED BY STUDY AND INVESTIGATION OF TRAFFIC CONDITIONS ON THE FOLLOWING PUBLIC ROAD OR ROADS IN THE CITY OF NOVI, MICHIGAN.

OLD NOVI ROAD

AND AFTER SAID INVESTIGATION, IT IS HEREBY ORDERED AND DIRECTED THAT THE DEPARTMENT OF PUBLIC SERVICES ERECT AND MAINTAIN THE STOP SIGN (S) IN ACCORDANCE WITH THE MICHIGAN MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES AS REQUIRED BY SEC. 33.217 OF THE AFORESAID CHAPTER, SAID SIGNS TO GIVE NOTICE OF THE FOLLOWING DETERMINATION:

NORTHBOUND OLD NOVI ROAD TO STOP AT 13 MILE RD/SOUTH LAKE DRIVE

Brian Coburn, P.E. - Traffic Engineer
Dated: August 26, 2010

APPROVED BY CITY COUNCIL

TRAFFIC CONTROL ORDER NUMBER 10-50 HAVING BEEN PRESENTED TO THE COUNCIL OF THE CITY OF NOVI, MICHIGAN FOR STUDY AND APPROVAL, IS HEREBY APPROVED AND IT IS HEREBY ORDERED AND DIRECTED THAT THIS ORDER BE FILED IN THE OFFICE OF THE CITY CLERK AND A COPY THEREOF IN THE OFFICE OF THE CHIEF OF POLICE OF SAID CITY.

IT IS FURTHER ORDERED AND DIRECTED THAT THIS ORDER SHALL BECOME EFECTIVE UPON BEING FILED WITH THE CLERK AND UPON ERECTION OF ADEQUATE SIGNS GIVING NOTICE OF THE EXISTENCE OF AFORESAID,

NORTHBOUND OLD NOVI ROAD TO STOP AT 13 MILE RD/SOUTH LAKE DRIVE

ADOPTED AT THE REGULAR MEETING OF CITY COUNCIL ON \qquad .

David Landry, Mayor

By:
Maryanne Cornelius, Clerk
\qquad
PURSUANT TO CHAPTER NO. 33 OF THE CODE OF ORDINANCES OF THE CITY OF NOVI, MICHIGAN, SAME BEING THE UNIFORM TRAFFIC CODE FOR CITIES, TOWNSHIPS AND VILLAGES OF MICHIGAN AND IN THE INTEREST OF PUBLIC SAFETY AND CONVENIENCE THE FOLLOWING TRAFFIC CONTROL ORDER IS HEREBY ISSUED BY BRIAN COBURN, SENIOR CIVIL ENGINEER, DULY AUTHORIZED AS TRAFFIC ENGINEER, BY SEC. 33.141 OF THE AFORESAID CHAPTER.

ISSUANCE OF THIS TRAFFIC CONTROL ORDER WAS PRECEDED BY STUDY AND INVESTIGATION OF TRAFFIC CONDITIONS ON THE FOLLOWING PUBLIC ROAD OR ROADS IN THE CITY OF NOVI, MICHIGAN.

13 MILE ROAD

AND AFTER SAID INVESTIGATION, IT IS HEREBY ORDERED AND DIRECTED THAT THE DEPARTMENT OF PUBLIC SERVICES ERECT AND MAINTAIN THE STOP SIGN (S) IN ACCORDANCE WITH THE MICHIGAN MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES AS REQUIRED BY SEC. 33.217 OF THE AFORESAID CHAPTER, SAID SIGNS TO GIVE NOTICE OF THE FOLLOWING DETERMINATION:

EASTBOUND 13 MILE TO STOP AT OLD NOVI ROAD/SOUTH LAKE DRIVE

Brian Coburn, P.E. - Traffic Engineer
Dated: August 26,2010

APPROVED BY CITY COUNCIL

TRAFFIC CONTROL ORDER NUMBER $10-51$ HAVING BEEN PRESENTED TO THE COUNCIL OF THE CITY OF NOVI, MICHIGAN FOR STUDY AND APPROVAL, IS HEREBY APPROVED AND IT IS HEREBY ORDERED AND DIRECTED THAT THIS ORDER BE FILED IN THE OFFICE OF THE CITY CLERK AND A COPY THEREOF IN THE OFFICE OF THE CHIEF OF POLICE OF SAID CITY.

IT IS FURTHER ORDERED AND DIRECTED THAT THIS ORDER SHALL BECOME EFECTIVE UPON BEING FILED WITH THE CLERK AND UPON ERECTION OF ADEQUATE SIGNS GIVING NOTICE OF THE EXISTENCE OF AFORESAID,

EASTBOUND 13 MILE TO STOP AT OLD NOVI ROAD/SOUTH LAKE DRIVE

ADOPTED AT THE REGULAR MEETING OF CITY COUNCIL ON \qquad .

By:
David Landry, Mayor

By:
Maryanne Cornelius, Clerk

MEMORANDUM

TO: ROB HAYES, P.E.; DIRECTOR OF PUBLIC SERVICES
FROM: BRIAN COBURN, P.E.; ENGINEERING MANAGER BC
SUBJECT: S LAKE/OLD NOVI/ 13 MILE INTERSECTION PUBLIC MEETING
DATE: OCTOBER 28,2010

The Engineering Division hosted a Public Information Meeting last evening for the proposed improvements at the intersection of South Lake Drive, Old Novi Road and 13 Mile Road. The scope of the project includes:

- Removal of the existing but now unwarranted traffic signal (to be replaced with the three-way stop that is currently in place).
- Reconfiguration of the South Lake Drive approach to better accommodate large vehicles (e.g., school buses and fire trucks).
- Installation of a sidewalk to fill in a gap along the south side of 13 Mile between the intersection and Martin Ave.

Postcard invitations were mailed to 350 homes in the vicinity of the project. The meeting was aftended by four people representing three properties. The chief concern is the perception that changes to the intersection would make it easier for traffic to use South Lake Drive leading to an increase in traffic. There is fear that the removal of the traffic island at the intersection would make it feel less residential and lead to increased traffic. There was also fear that the installed stop signs would decrease the delay vehicles currently experience with the unwarranted traffic signal and would lead to increased traffic. Concern was expressed for pedestrian travel across the intersection under stop control and for the lack of compliance with the new stop signs. There no were major concerns about the proposed sidewalk or the repaving of the intersection.

Staff explained that while there some minor traffic calming measures installed with the reconstruction of South Lake Drive in 2003, such as the median islands and narrower lanes, the reduction in traffic was most likely caused by the realignment of Novi Road, the construction of West Park Drive and the opening of an on ramp to eastbound 1-96 at Beck Road. These improvements have helped to decrease the traffic on South Lake Drive from 7,400 vehicles per day in 1986 to 2,600 vehicles per day now. Further, we explained that the traffic signal is no longer warranted, is not intended or recognized as a method of traffic calming, and should be removed. The all way stop control that is proposed for the intersection will provide better protection for pedestrians since all directions are required to stop (as opposed to the open green phase under a traffic signall. We will work with the Police Department to increase enforcement of the stop signs.

Based on the comments received at the meeting, we intend to continue with final design of the project, but will leave the median island in place on South Lake Drive while widening the approach to South Lake Drive to accommodate fire trucks and busses. Additionally, we will review the feasibility of adding some trees near the intersection to promote traffic calming. We will continue to include the removal of the signal, rehabilitation of the pavement, and construction of the sidewalk gap as originally proposed. Once the final design is complete,
we will post on the project webpage www.cityofnovi.org/southlake to share with these interested residents.

The traffic signal is currently flashing red in all directions and temporary stop signs have been installed to establish a three-way stop at the intersection under a temporary traffic control order. A permanent control order will be presented for consideration on a future City Council agenda. Construction is anticipated to begin in spring 2011 with completion in summer 2011.

cityonoviorg

MEMORANDUM

TO: ROB HAYES, PE.; DIRECTOR OF PUBLIC SERVICES
FROM: BRIAN COBURN, P.E.; SENIOR CIVIL ENGINEER B ${ }^{\text {CC }}$
SUBJECT: SOUTH LAKE DRIVE/OLD NOVI/ 13 MILE SIGNAL
DATE:
AUGUST 24, 2010

The decommissioning of the existing traffic signal at the intersection of South Lake Drive, Old Novi Road, and 13 Mile Road is part of the project to improve this intersection. The existing traffic signal at the intersection was installed in 1986 at a time when traffic counts on South Lake Drive were as high as 7,400 vehicles per day. The City has constructed two new roads in the northern part of the City since that time that have diverted traffic away from this intersection, including the "new" Novi Road alignment between 12-1/2 Mile Road and 13 Mile in the late 1990s and the construction of West Park Drive in early 2000s. The traffic volumes on South Lake Drive have since decreased to 2,600 vehicles per day.

A traffic study was completed for this intersection in 2009 by the City's traffic consultant, Birchler Arroyo. The study (attached) found the existing traffic signal to be unwarranted based on existing and future anticipated traffic volumes, as well as other traffic design parameters. The study recommended that the intersection be improved to increase the level of service (an indicator of the time delay to proceed through the intersection), and to allow for improved turning movements through the intersection. Based on this study, improvements proposed to this intersection include the removal of the existing unwarranted traffic signal, replacing the signal with all-way stop sign control, partial reconstruction of the South Lake Drive approach to better accommodate large vehicles (e.g. school buses and fire trucks), and other minor improvements that may be required following further study of the intersection during preliminary design.

The operation of a traffic signal is governed by the Michigan Manual of Uniform Traffic Devices (MMUTCD). The MMUTCD requires the following steps be followed before a signal can be removed:
A. Determine the appropriate traffic control to be used after removal of the signal.
B. Remove any sight-distance restrictions as necessary.
C. Inform the public of the removal study, for example by installing an informational sign (or signs) with the legend TRAFFIC SIGNAL UNDER STUDY FOR REMOVAL at the signalized location in a position where it is visible to all road users.
D. Flash or cover the signal heads for a minimum of 90 days, and install the appropriate stop control or other traffic control devices.
E. Remove the signal if the engineering data collected during the removal study period confirms that the signal is no longer needed. Instead of total removal of the traffic control signal, the poles and cables may remain in place after removal of the signal heads for continued analysis.

Items A and B were addressed in the Birchler Arroyo study, which identified that an all way stop control would be appropriate traffic control for the intersection if the signal were removed. The sight distance at the intersection is appropriate for an all-way stop. To meet Item C, staff installed appropriate signs (see photo left) at all three legs of the intersection in late July. In the past month, we have received 15 calls from motorists of which 11 callers wanted the signal removed and only four wanted the signal to remain. Most of the callers that were against removal were concerned about pedestrian use of the intersection. A few, when informed of the proposed all way stop at the intersection, acknowledged that it would facilitate the pedestrians.

The next step toward removal of the signal is to place the signal in flash mode for 90 days per Item D. The signal will begin to flash red in all directions on August 26, 2010 for a period of 90 days. Stop signs will be installed to supplement the flashing signals under a temporary traffic control order that will expire at the end of November 2010. The improvements to this intersection will be coordinated with planned improvements to the City's Landings Property and the general alignment of the intersection will remain unchanged. As with other construction projects of this nature, a public information meeting will be held to solicit public input as part of the design development process, especially from neighboring homeowners associations and businesses. We anticipate that by the time a permanent traffic control order is presented to City Council for consideration in early November that a design incorporating public input would be near completion.

The final step in the signal removal process would occur with the construction project. Once the design is finalized this fall, the project would be bid for spring 2011 construction.

CHAPTER 4B. TRAFFIC CONTROL SIGNALS-GENERAL

Section 4B. 01 General

Standard:
A traffic control signal (traffic signal) shall be defined as any highway traffic signal by which traffic is alternately directed to stop and permitted to proceed.

Traffic shall be defined as pedestrians, bicyclists, ridden or herded animals, vehicles, streetcars, and other conveyances either singularly or together while using any highway for purposes of travel.
Support:
Words such as pedestrians and bicyclists are used redundantly in selected sections of Part 4 to encourage sensitivity to these elements of "traffic."

Standards for traffic control signals are important because traffic control signals need to attract the attention of a variety of road users, including those who are older, those with impaired vision, as well as those who are fatigued or distracted, or who are not expecting to encounter a signal at a particular location.

Section 4B.02 Basis of Installation or Removal of Traffic Control Signals

Guidance:
The selection and use of traffic control signals should be based on an engineering study of roadway, traffic, and other conditions.
Support:
A careful analysis of traffic operations, pedestrian and bicyclist needs, and other factors at a large number of signalized and unsignalized locations, coupled with engineering judgment, has provided a series of signal warrants, described in Chapter 4C, that define the minimum conditions under which installing traffic control signals might be justified.
Guidance:
Engineering judgment should be applied in the review of operating traffic control signals to determine whether the type of installation and the timing program meet the current requirements of all forms of traffic.

If changes in traffic patterns eliminate the need for a traffic control signal, consideration should be given to rogroving it and replacing it with appropriate alternative traffic control devices ; $;$ any are needed Option:

If the engineering study indicates that the traffic control signal is no longer justified, removal may be accomplished using the following steps:
A. Determine the appropriate traffic control to be used after removal of the signal.
B. Remove any sight-distance restrictions as necessary.
C. Inform the public of the removal study, for example by installing an informational sign (or signs) with the legend TRAFFIC SIGNAL UNDER STUDY FOR REMOVAL at the signalized location in a position where it is visible to all road users.
D. Flash or cover the signal heads for a minimum of 90 days, and install the appropriate stop control or other traffic control devices.
E. Remove the signal if the engineering data collected during the removal study period confirms that the signal is no longer needed. Instead of total removal of the traffic control signal, the poles and cables may remain in place after removal of the signal heads for continued analysis.
Section 4B.03 Advantages and Disadvantages of Traffic Control Signals

Support:

When properly used, traffic control signals are valuable devices for the control of vehicular and pedestrian traffic. They assign the right-of-way to the various traffic movements and thereby profoundly influence traffic flow.

Traffic control signals that are properly designed, located, operated, and maintained will have one or more of the following advantages:
A. They provide for the orderly movement of traffic.
B. They increase the traffic-handling capacity of the intersection if:

1. Proper physical layouts and control measures are used, and
2. The signal operational parameters are reviewed and updated (if needed) on a regular basis (as engineering judgment determines that significant traffic flow and/or land use changes have occurred)

January 9,2009
Brian T. Cobum, PE.
Engineering Department

City of Novi
45175 W. Ten Mile Road
Novi, MI 48375
beobun@olvanoulion

Subject: Traffic Study Report for Intersection of Old Novi, 13 Mile, and South Lake

Dear Mr. Coburn:

We have completed our study of the above intersection (see Figures 1.2, below), conducted per our Clty-approved proposal of December 2, 2008. This report summarizes our recommendations, data collection, analytical findings, and field observations.

Recommendations

1. The existing unwarranted traffic signal should either be removed or operated in flashing mode (red in all three directions) at all times. The cycling operation of the signal should replaced by all-way STOP signs, and the stop bar on the notheast-bound OId Novi Road approach moved somewhat closer to the intersection (by an amount to be determined under \#3, below).
2. South Lake Drive near Old Novi / 13 Mile should be redesigned and partially reconstructed to better accommodate large vehicles having a legitimate need to furn onto South Lake Dr. from both the east and south (e.g, school buses). This might involve flaring out the northem curb and removing the off-tracking apron, and/or tapering the south end of the boulevard island.
3. To properly design for larger vehicles, a survey should be done of the road edges and existing lane striping within 150 ft of the intersection in all drections. We would then be in a better position to sketch our recommended design changes. (The 2003 reconstruction plan for South Lake Drive, prepared by others, shows only the South Lake Drive leg of the intersection.)

Data Collection

Both trafic volume and crash data were obtained. Volume data include the results of manual counts done by Birchler Arroyo Associates during the 7:00-9:00 a.m. and 4:00-6:00 p.m. peak periods on Wednesday, December 10, 2008 (detailed in Appendix A). Also, to check on recent traffic volume trends, hourly two-way counts for Old Novi Road were retrieved from the SEMCOG data base (see appendix Figure A-1).

Crash data were provided by the Traffic Improvement Assoclation (TIA) for the latest available three calendar years, 2005-2007, These detailed data appear in Appendix B, along with our summary of the 19 reported crashes (Table B-1).

Figure 1. Vertical Aerlal

A

Figure 2. Birdseye Aerial

Cumen and Future Peak How Trapic Volunes

Figure 3 shows the intersection's cirrent movement volumes during the AM and PM peak hours, which were found to be 7.30-8,30 am and 4.45.5.46 pm. These counts yeld wo-way volumes on Old Nov Road just south of the intersection of 105 vehies and 217 vehicles, respectively.

Table 1 compares, for selected hours, the current two-way volumes on Old Novi Road to the May 2004 volumes reported by SEMCOG, Note that the volumes observed in 2004 have decreased some 20.25%. This may retlect a reduction in cuthrough tratic using Old Novi Road leaving and returning to South Lake Drive, llkely due to such factors as the completion of the fulliservice 1.961 Beck Road interchange as well as the trafic-calining reconstruction of South Lake Drive.

Table 1. Twodvay Volumes on Old Novi Road

Hour Starting	Dec 08	May $04{ }^{2}$	Dec 08 May 04
700 am	99	147	0.67
$730 \mathrm{am}{ }^{1}$	105	-	0.75 (avg)
$8: 00 \mathrm{dm}$	96	115	0.83
4.00 pm	182	227	0.80
445 pm	217	*	0.80 (avg)
5.00 pm	221	278	0.79

1 Peal hour in Dee 08
2 From SEMCOc wabite

With resped to the design year of 2028, we belleve that it is reasonable to assume that a modest rate of positive traffic growth will replace the recent decline noted above. For this study, we are assuming an average annual growth of 1%. Compounded annually over 20 years, this means that 2028 volumes could exceed curent volumes by 22%. Figure 4 reflects such an adjustment.

Trafico Signal Warrants

Of the eight signal installation warrants appearing in the 2005 Michigan Manual of Unform Trafic: Control Devices, the one we have generally found to be most easily met is the peak-hour volume warrant, offcially Pait B of Warrant 3, Peak Hour" (excerpted in Appendix 0). Warrant 3 has two paits, with Patt B dealing only with peak hour volumes and Pant A dealing with both cumulative peak-hour delay and the associated volumes, Only one of the two parts of Wanant 3 must be met for the warrant to be met, and only one warrant of the total of eight must be met to permit (but not require) a cycling signal.

Figure 3 indicates that the bighest woway peak-hour volume on the major road at this intersection is now 374 vehicles in the PM peak hour (total of the NEB and SWB approaches), Since the applicable warrant chart in Appendix C begins at 400 vehicles, the signal is clearly unvaranted.

Lesend X W, where $\mathrm{X}=7.30830 \mathrm{Am}$ $Y=4.45-5.45 \mathrm{P}$

Figure 3. Current Peak-Hour Trafic Volumes

Legend
Xis，where：
$x=730330$ an
$Y=125545 \mathrm{PM}$
－Cumentiec08） voumes increased $19 /$ year componeded annualy（ormulepied by atocorof 221

Figure 4 Forecasted 2028 Peak－Hour Volumes

Current and Future Levels of Sorvice

Synchro 7 capacity analysis sofware was used to predict average vehicular delays, associated levels of service, and queue lengiths. As briefly explained at the beginning of Appendix D, the level of service (LOS) for a traffic movement, approach, or intersection is a letter grade between A and F, assigned by the analysis software based on the average delay per vehicle predicted in a computer simulation. An overall level of selvice of D or better is typically sought in an urban or suburban area.

Table 2 summarizes the LOS results obtained from our analysis of the intersection. The first block of the table presents the current operation, which overall is LOS C in the AM peak hour and LOS D in the PM peak hour. While these levels are normally considered acceptable, the D in the PM is largely due to LOS F for northeast-bound left turns onto South Lake Drive, which must yield to the higher volume of southwest-bound right turns from 13 Mile (there is no left-tum signal phase).

Table 2. Levels of Service atold Novi/ 13 Milie / South Lake: Existing Signal v, Alternative AllWay Stop Control ${ }^{1}$

Approach ${ }^{2}$	Movement ${ }^{3}$	AM Peak Hour			PMPeak Hour		
		Volume (veli)	Avg. Delay (seclveh)	LOS	Volume (vel)	Avg. Delay (seciveh)	LOS
Current (2008) Trafic - With Signal							
Overall intersection		295	26.4	C	510	38.6	D
SEB	L中R	175	26.3	C	136	35.8	D
NEB	L	10	30.7	C	70	106.1	F
	T	11	25.0	C	74	24.3	C
SWB	$T+R$	99	26.4	C	230	25.4	C
Current (2008) Traffic - With All-Way Stop in Leu of Signal							
Overall litersection		295	8.6	A	510	8.7	A
SEE ${ }^{\text {F }}$	L+R	175	9.1	A	136	9.3	A
NEB ${ }^{\text {* }}$	L	10	7.2	A	70	7.7	A
	T	11	6.1	A	74	6.9	A
SWB*	$T+R$	99	8.0	A	230	9.1	A
Fukure (2028) Tratic - Whth All Whay Stop							
Overall Intersection		359	9.1	A	621	9.5	A
$E B^{*}$	$L+\mathrm{R}$	213	9.8	A	165	102	B
NEB*	L	12	7.3	A	85	8.2	A
	T	13	6.2	A	90	7.3	A
SWB*	T+R	121	8.3	A	281	10.2	B

[^0]The second block of Table 2 shows that the replacement of the exising cycling frafies signal by allway STOP sign confrol would improve current peak-hour LOS rather dramatically, to an A in both peak hours. The third block of the table shows that all-way stop control would continue to provide LOS A under the traffic volumes projected to year 2028.

Recent Crash History

As indicated in appendix Table $\mathrm{C}-1$, the annual intersection crash frequency in 2005, 2006, and 2007 was 11,7, and 1, respectively. While crash frequencies typically vary significantly from year to year at lower-volume intersections such as this one, the downward trend in this case is rather remarkable. Clearly, decreasing trafic volumes would be one contributing factor, butt temains undear what oiner factors may be at play.

The average annual crash frequency in 2005-2007 was 6.33 crashes per year. Assuming that the total. PM peak-hour traffic volume now entering the intersection is 10.2% of the daly volume as 10 was in 2004 (per Figure A-1), the average daly volume now entering the intersection 155,000 velicles. Further assuming that the current entering yolume is the best avalable estimate of the average entering volume in 2005-2007, the resulting average crash rate in those years was 3.5 crashes per million vehicles. Applying procedures and test values found in the $22^{\text {nt }}$ edition of the SEMCOG Trafic Safety Manual, we find that this is not a "high-crash" intersection the average observed crash rate of 3,5 was less than the cificical crash rate for this type of intersection of 4.0).

Furthermore, we are of the opinion that nether our cresh summary (Table C -1) no the TIA summary tables (also in Appendix C) show any significant crash patterns that may indicate the need for a paricular form of safefy mitigation. There was only one crash resulting in incapacitating injury (lievel A), and it involved a single vehicle operated after dark by an alcohol-affecied diver. In addition, there were only three other crashes involving "possible" injury (level C).

Field Observations

Under the curtent wo-phase signal operation, all lett turns from noitheasi-bound Old Novi Road must yield to traffic on southwest-bound 13 Milie Road. This means that 70 left turns in the PM peak hour must yield to 230 oncoming vehicles on 13 Mile, most of the latter (83\%) turning right. As shown above, Synchro predicis that this results in relatively Iong delays for the left turns.

Obsenations by our traffic count supervisor suggest that the desire of those lett:furn drivers to minimize their delays sometimes results in Jeff tums starting before oncoming traffic fully clears the intersection, apparently reflecing the assumption that oncoming traffic will invariably turn right. Cases were noted where southwest-bound through drivers used their left-turn signals, either due to the curve (Figures 5-6) or to show that they were not turning right.

Figures 7 and 8 confirm that larger vehicles furting right into South Lake Drive are unable to do so without encroaching on areas behind the curb-and-gutter. An off-tracking apron, not shown in the original reconstruction plan, was later added to accommodate these turns (also note the gray trafic

Figure 5. Northeastmound Old Novi Road

Figure 6. Southwest-bound 13 Mile Road

Figure 7. Southeast-bound South Lake Drive

Figure 8. OffrTracking Apron at Entrance to South Lake Drive
wear on, and even north of, the apron shown in Figure 2). Even whth the apron, we noted numerous marks and gouges in the noth curb of the island (look closely at Figure 8).

We suspect that larger vehicles turning laft onto South Lake Drive also have to use the apron and/or "swing wide" and encroach on the northeast-bound lane as they begin their turn. Our preliminary use of design-vehicle tuming templates on an approximately scaled aetial photo indicates llikely problems for larger vehicles entering South Lake from bolh the east and soulh.

Conclusions

From the above, it is clear that a cycling frafici signal at this location is no longer warranted. Since the reduced trafic volumes do not wariant a signal, we also believe that they do not warrant a large capital investment (such as the possible installation of a toundabout). The intersection should be controlled by all-way STOP signs, At the City's option, the existing signal hardware could be retained indefinitely, with the signals placed in full-time flashing-red mode as a way of alerting divers to the stop requirement.

It also appears to appropriate to refine the intersection's design to better accommodate legitimate design vehicles (e.g, school buses). In the next construction season, we believe that the Cily should strive to widen the entering throat of South Lake Drive, by flaring the north curb and/or tapering the end of the boulevard island. Accompanied by all-way STOP signs, the wider entering throat for South Lake should not increase the road's appeal as a potential cut-through route.

Please let us know if you have any questions or comments regarding this report. As indicated in Recommendation \#3 (above), we would be glad to further assist you with the preparation of a conceptual redesign of the South Lake Drive side of the intersection.

Sincerely,

BIRCHLER ARROYO ASSOCIATES, INC.

Rodney L, Arroyo, AICP
Vice President

Willam A. Stimpson, P.E.
Director of Traffic Engineering

APPENDIXA:

TRAFFIC COUNTS

Wednesday. Decembor 10,2008

Cumularve Tumbng Novenent Counts

16 MINUTES ENDINC	SEE South Lake		SWB 13 Mile		NEQOId Novi		TOTAL
	LT	RT	TH	RT	LT	TH	
7.15	26	10.	4	9	1	2	52
7.30	45	23	11	13	2	9	103
7.45	83	34	24	25	4	12	182
800	126	45	35	40	5	14	265
8.15	162	53	46	52	7	18.	338
8.30	186	57	61	62	12	20	398
$8: 45$	215	63	74	69	16	22	459
9.00	248	68	35	83	16	26	526

Tuming Movement Couns by 15 Mmute Interval

15 MINUTES ENDINC	SEB Sounlake		SWE 18 Mle		NEB OId Nov		TOTAL
	LT	तT	TH	RT	LT	TH	
7115	26	10	4	9	1	2	52
7.30	19	13	7	4	1	7	51
7.45	38	11	13	12	2	3	79
8.00	43	11	11	15	1	2	83
8.15	36	8	11	12	2	4	73
8:30	24	4	15	10	6	2	60
$8: 45$	29	6	13	7	4	2	61
9.00	33	5	11	14	0	4	67
TOTAL	248	68	85	83	16	26	526

Gourly Total

HOUR BECINNING	SEB South Lake		SNE 13 Mile		NEE Old Novi		TOTAL
	LT	RT	TH	RT	LT	TH	
7.00	126	45	35	40	6	14	265
7115	136	43	42	43	6.	16	286
7×30	141	34	50	49	10	11	295
7.45	132	29	50	44	12	10	277
$8: 00$	122	23	50	43	11	12	261

AM Peak Hour

MOUR BEGINAING	SEB South Lake		SW8 13 Mile		NEB OId NIovi		TOTAL
	LT	RT	TH	BT	LT	TH	
7,30	141	34	50	69	10	11	295
PhF (Peak-Hour Factor)	0.82	0.77	0.83	0.82	0.50	0.69	08
	0.81		0,95		0.75		. 0.
Pricent Large Vehicles	2,1\%	0,0\%	6.0\%	6.1%	20.0%	0.0\%	3.7\%

TRAFHC STUDV OF OLD NOWRD $/ \sqrt{3}$ MLI

Wednesday, Decomber 10,2008

Cumulative lumtrembovement Counts

15 MNUTES ENDING	SEB South Lake		SWB 13 Mlle		NEB OId Nov		TOTAL
	LT	T	TH	ET	LT	11	
4.15	11	2	9	34.	17	11	84
4.30	32	θ	24	66	40	30	201
4.45	47	13	31	93	49	42	276
5:00	83	17	42	141	66	57	406
5:15	109	28	49	201	85	77	548
$5: 30$	127	39	59	285	102	97	650
545	149	47	70	284	119	116	795
6.00	158	53	32	322	140	128	883

Turning Movement Counts by 15 -Minute Interval

15 MINUTES ENDING	SEB Soulh Lake		SWE 13 Mile		NEBOId Novl		TOTAL
	LT	RT	TH	हT	LT	TH	
415	11	2	9	34	17	11	84
4×30	21	7	15	32	23	19	117
$4: 45$	15	4	7	27	9	12	34
5.00	36	4	11	48	17	15	131
5.15	26	11	6	60	19	20	142
5.30	18	11	11	34	17	20.	111
5.45	22	8	11	49	17	19	126
600	9	6	12	38	21	12	98
TOTAL	158	53	82	322	140	128	883

Hourly Tosal

HOUR BEGINNING	SES South Lake		SWB 13 Mle		NEB OId Nov		TOTAL
	LT	RT	7 H	RT	LT	TH	
400	83	17	42	141	66	57	406
$4: 15$	98	26	39	167	68	66	464
4.30	96	30	35	169	62	67	458
$4: 45$	102	34	39	191	70	74	610
6.00	75	36	40	181	74	71	477

PMi Peak Mour

HOUR BEGINNING	SEE Soulh Lake		SWB 13 MIle		NEB Old Novi		TOTAL
	LT	RT	TH	RT	LT	714	
445	102	34.	39	191	70	74	510
PhF (Paak-Hour Factor)	0.71	0.77	0.89	0.80	0.92	0.93	0.90
	0.85		0.87		0.92		0.20
Percent Large Vehioles	0.0\%	0.0\%	0.0%	0.5%	0.0\%	1.4\%	0.4\%

TRAFFO STUDY OF OLD NOV RD / 13 MLEE ND $/$ SOUTHLAKE DR Aht Tuning hovemen Coumir Latge Vehcles Onty
Wednesday December 10, 2008

Cumunatve Tumnagulovement Counts

15 MINUTES ENDINO	SES South Lake		SWB 13 Mlle		NEB Old Moy		TOTAL
	LT	RT	7 H	RT	LT	TH	
715	0	0	0	0	0	0	0
730	1	0	0	0	0	0	1
$7: 45$	3	0	1	0	0	0	4
8.00	3	0	2	3	0	0	6
$8: 15$	4	0	3	3	1	0	11
8.30	4	0	3	3	2	0	12
$8: 45$	5	1	3	4	3	0	16
9:00	7	1	4.	7	3	2	24.

Tuming Movement Counts by $15-\min$ ite Interval

15 MINUTES ENDING	SEB Soull Lake		SWB 13 MIE		NEB Old Nowl		TOTAL
	LT	RT	7 H	RT	LT	TH	
716	0	0	0	0	0	0	0
7.30	1	0	0	0	0	0	1
$7: 45$	2	0	1	0	0	0	8
800	0	0	1	3	0	0	4
8.15	1	0	1	0	1	0	3
8:30	0	0	0	0	1	0	1
8×45	1	1	0	1	1	0	4
9.00	2	0	1	3	0	2	8
TOTAL	7	1	4	7	3	2	24

Hounly Total

HOUR BECINNING	SEB South Leke		SWE 13 Mile		NEE OId Novi		TOTAL
	LT	RT	TH	RT	LT	TH	
7.00	3	0	2	3	0	0	8
$7: 15$	4	0	3	3	1	0	11
Whaty	, \times W	0	3	3	2	0 0,	11
7.45	2	1	2	4	3	0	12
8.00	4	1	2	4	3	2	16

* Peak hout for overall trafic: 3 sonool buses SEE LT. 3 school buses SWB RT, 2 SU iruek NEB LT.
AMP Poak Hour

HOUR BEGINNING	SEB South Lake		SWB 13 Mile		NEE Old Novi		TOTAL
	LT	RT	TH	RT	LT	TH	
8:00	4	1	2	4	3	2	16
P4F (PeakHour Factor)	0.50	0.25	0.50	0.33	0.75	0.25	0.50
	0.63		0.38		0.63		

TRAFFICSTUDY OF OLD NOWRD/TB WIE ROISOUTHLAKEDR
pht Tuming inovemenk Count Large Wehicles Only
Wednesday, December 10,2008

Cumulative Turring Wlovemen Counts

15 MINUTES ENDING	SEB South Lake		SWD 13 Mile		NEB OId Novi		TOTAL
	LT	RT	TH	RT	LT	TH	
$4: 15$	0	0	0	3	0	0	3
430	1.	0	0	3	1	0	5
4.45	1.	0	0	4	1	0	6
5.00	1	0	0	4	1	0	6
5.15	1	0	0	4	1	0	6.
5.30	1	0	0	5	t	1	8
6.45	1	0	0	5	1	1	8
6.00	1	0	0	5	1	1	8

Tuming Movement Counts by 15 -Hinute Interval

15 MINUTES ENDING	SEE South Lake.		SWB 13 Mile		NEB OId Novi		TOTAL
	LT	RT	TH	RT	LT	TH	
495	0.	0	0	3	0	0	3
430	1	0	0	0	1	0	2
4.45	0	0	0	1	0	0	1
5:00	0	0	0	0	0	0	0
5.15	0	0	0	0	0	0	0
6:30	0	0	0	1	0	1	2
5.45	0	0	0	0	0	0	0
6.00	0	0	0	0	0	0	0
TOTAL	1	0	0	5	1	1	8

Houny Total

HOUR BEGINNING	SEE South Lake		SWB 13 Mile		NEB OId Novi		TOTAL
	LT	RT	TH	RT	LT	TH	
$4: 00$	1	0	0	4	1	0	6
416	1	0	0	1	1	0	3
4:30	0	0	0	2	0	1	3
	0	10, 0	- 0	-5 ${ }^{\text {a }}$			54xak L^{2}
5.00	0	0	0	1	0	1	2

(6) A00: 1 bus SEB LT, 3 buses B UPS TK SVB RT, \& 1 DUS NEB LT. Poak hour for overall traftic: 4 UPS truck SWE RT:
PM Peak Hour

HOUR beginning	SEB SouthLake		SWE 13 Mile		NEB Old Novi		TOTAL
	LT	ET	TH	RT	LT	TH	
4:00	1	0	0	4	1	0	6
PHF (Peak-Hour Factor)	0.25	101VIO!	\%) $\frac{0}{}$	0.33	0.25	$\frac{3}{5}$	0.50

Date of Cotils	$51720046518 / 2004$
Deve 0 Wek	Monday
County:	Oatend
Community:	Noyl
PR Number:	621910
From Mile Paint:	00000
Tomme Point:	0.49
24 Hour Count	$27 / 86$

Howr	Count	Hour	Count	Hour	Count	
$12 \mathrm{am}-1 \mathrm{am}$	14	8 am - 9 am	115	4pm-5 pm	27	
1 am 2 am	8	$9 \mathrm{~cm}-10 \mathrm{~cm}$	110	5 mm .6 mm	778	$<K=\frac{276}{3726}=$
2 mm 3 zam	7	$10 \mathrm{am} / 11 \mathrm{am}$	116	6 mm 7 mm	174	0.102
3 a 年. 4 alim	3	11 an-12 pim	149	7 pm .8 pm	163	
4 am - 5 am	10	$12 \mathrm{pm}-1 \mathrm{~mm}$	166	8pmom	134	
$53 \mathrm{~m}-6$ am	42	1pm-2pm	181	9pm-10pm	109	
$6 \mathrm{am}-7 \mathrm{am}$	115	$2 \mathrm{pm}-3 \mathrm{pm}$	202	10pm-11pm	43	
$7 \mathrm{~mm} \cdot 8 \mathrm{am}$	17.	3 pm .4 pm	182	11 mm - 12 am	21	

Figure A-1. Two Way Trafic Volumes in 2004 on Old Novi Road (SEvCOG)

APPENOXX:

CRASHDATA

\％	Date	Localion	Crash Type								Condibion		Sevativy ${ }^{\text {P }}$ Of Preonst				
			Angle．		Headon．		Side Swipe		Rear	Oner．	Light	Wealier	K	唟	B	0	0
			Di． 1	Din 2	Straight	LT	Di1	Dir 2									
1	$1-18.05$	Diveway 30.5 of 13 Mmle					S8	S8			Day	Dry					3
2	20505	Dineway 15 Whol old Novi							Backed into WB		Datk	On					4
3	32005	Center ofintersection							Hitrear of WB		Day	Dry					2
4.	600605	SLD 15 NW OTOd Novi								＜ NBHOLT ？	Day	Dry					3
5	$6.25-05$	13 Mile 60＇Ef Odd Novi								Nun－collison	Dath	Dry		1			2
6	7.0305	Old tovi 25 Sof 13 Male							Hitrear of NB		Day	Dry					5
7	76805	13 Whe re Eot old Noy							Hit ear of W8		Day	Wee					2
8	805－05	Od Novi 10 N of 13 Mile	EBL	NBT							Day	Dry				1	1
9	90805	13 whle 10 Wof Old Novi	WB	58							Day	Dry					2
50	10．1105	Old Nowl S Sofso							Hemearofes		Day	D\％				1	2
11	123105	13 Mile 75 NE of Old Novi	$E 8$	WE							Dark	Snown					4
12	12200	OdNov 10 M of 13 能e							Hitrear of 58		Datik	Dy					4
13	1－27．00	Center of thersection				EB					Day	Dry					1
14	203006								Whear of 88 ．		Dawn	Were					3
15	426006	13 絾le 100 E SiPd Now							3Wevehicles		Day	Dy				2	3
18	500.06	13 Mile 3 E of Of Novi				EE					Dark	Dy					2
17	9.2506	Or Novi lo Ne of chate	88	Ne							Day	Dy					2
16	10－03．05	Center ofintersection								＜ 4 veli all 3 dit．	Day	Dry：					5
19	100407	SLO 12 NW of 33 Mle								Backed into NB	Data	Dry					2
Tolatm of Persons													0	1	0	4	52

Wtersechan Crash Geport Wham stimpron (OId Nov, 13 , Mie Rd, South Lete De) Dates $01 / 01 / 2005-12 / 31 / 2007$
 Roads: ola Novitals (0-0.04)
 13 MHERd 7 W (1.96-2.06)
 Crlterla

TA Trame Crash Analyats Tool
Report Prited on $12 / 172000$

W Locadon Nove (o. crash Date 01/28/2005 muntesks 0 cytr Novi	30 teet s of 13 MLE Day: Tue Hour I pm InjA: $0 \quad$ Tnj 0 Arear drwwy at inter		Weathers clear 3nt Ct 0 Hest N		Boadway dry 7 mol 3 Drugs: N		Crasfrom: 5887920 Lethey day How ssome Complaint No 0500358	
With No Veh Dik 1 5 2 5	Action Prior changelanes go straight	Event 1 vell $\frac{1}{}$ transpt veh in transpt	Evant none none	Event 3 novie none	Event none none	- WazAction hal to yited none	Vah Type car car	Damege ithside ruside
H2 Location 13 MiLE $(2$ crash Dase 02/05/2005 tnjurles 140 cVTe NOVI	2.03) 15 feet w of Day: Sa xtiA: Area: d	$\begin{aligned} & \text { Nov: } \\ & \text { Hour } 7 \mathrm{pm} \\ & \text { Iny B; } 0 \\ & \text { drowy at inter } \end{aligned}$	Weath Xn] c HBD:	ark clear 0 N	Roatu Inio: Drugs		crash dark/untio ruend laina No:	$\text { D } 5928917$ 7090
Unit No Vehbir 1 E 2 W	Acton Pifor backing stop on road	Event 1 veln in transpt vehin transpt	Evant 2 none none	Evant 3 none none	Event none none	HazAction improp backing none	Veh type car cair	Damage ctrrear corimt

43 Loemton W W MLE RD (203) o fee X of NOVL R
crash Dater 03/29/2005 Day Tue Houp $4 p m$
munes 45: 0
cym NOVI

Xnat o mise 0
Areaza mer other

Weathear clear Noadway: bry
Inco 0
HED: 19

That 0: 2
Druge: N

Grash 3 D : 6008782
Lignt day
Howe rivend Complaint Now 0516236

Unte No	Veh Dir	Acton Prior	E	Event 2	nt 3	Event 4	Wa. Actom	Whtre	Damage
1	W	go straght	of control	ven in transpt	none	none	unable to stop		ctrif
2	W	stop on read	veh to transpt	nome	none	none	none	plekup	ctrear

\#f Location: SLAKEDR (1,36) 15 feet NW of NOVI RD

后 Locaton NNOVRD $(0.01) 25$ feet 5 of 13 MLERB Crash bater 07/03/200s Days sum Hour 2 pm mintles K . ctri NOVI

Untt No Veh Dif	
1	N
2	N

TuA: 0 Dns 0
Areat Inter other
Weadher clear
xince 0
MBD: N
crach 18 : 6075044
Roadway: dry utghe day 3nlor 5
brugs: N
hown mend
Complamx Ho: 0534841

*9 Location 13 MLE RO (2.03) 10feet W of NOVI RD
Crash Date: 09/08/2005

Injurlesk 0
cyre novi

Day: Thu Hourt 1 pm
$\min A \quad 0 \quad \mathrm{Tn}$ at 0
Area: w/intersecton

Weathet dear Roadway dry	
Tnjc: 0	Sno: z
HBD: N	Drugst N

Crash 20: 6143215
Lighes day
Howt angle
Complatnt No: 0547970

UnkWo	Veh Dir	
2	W	
2	s	

Action Prlor
go stralght
go stralght
Event 1
veh in transpt
veh in transpt:

Evonk 2	Evonts	Event A	Wáa Actlon
none	none	none	disgdtraf cti
none	none	none	none.

Ventype	Damage
car	rtrear
car	ctrfint

\#10 Locablon: NOV RD (0.00) 1 feet SW D S LAKE DR crash Date 10/11/200s Day: Tue Hour 3pm
mambes k: 0
cyT NOVI

XIdA: $0 \quad$ Xn E: 0
Areal whintersection
Weather: cloudy

Muct 1
MeD: N

Roadway: dry
nin on 2
Drugs: N
craelt 1 : 6153228
Heht: day
Howiy rreend
Complaint No: 05054634

Unta No 1 2	VehDir E E	Action Prtor go stralght stop on road	Event 1 veli in transpt veh in transpt	Event 2 none hone	Event 3 none. none	Event 4 none none	Haz Action unable to stop none	Veh rype van caf	Damage cerfrnt ctrrear

Meather snow
minc: 0

Roadway snowy
mino of 4

cum nown	dreas Inter other	H200 N		maugs：N		Complamonot 057193		
Whis Wo bly 2 E 2 W	Acton entar Event ev right tum loss of control 8 stop on rodd vel In transpt no	Evant 2 ＊centermedlan none	紋vent veh intranspt none		$0 n 4$	Wak Ac 100 这䋨 none	H Veh car plekup	Demage atrim ctrmt
42 Lockutom NOUL 10 Crost bater 01／22／2000 Thlumes k： 0 cyar Novi	0.00710 feet of 13 MLE 6 Day：sum Hown zam Arsar Internther	Whather： Tuse 0 NBD：	clear	Roadway min or 4 bruges N	dry	Crash 5 2\％ 6254482 arkitad end nt No： 215306		
Wifle wo $\frac{1}{2}$ 5 2 5	Action enor Evont stop on read veh in transpt go straght ron of rodif	gvent none notle	Event 3 none none	Event none none	\＆Naznction none negltring		Veht Tupe pickup car	Datrage rrear： ctime
313 Lacation：N NOV Crash Dates 01／272000 minutes ks 0 cut：NOVI		Weathar： wnc： 0 HBD：N	clear	posduray： nnor Drugse N	diy	Leh How com	Crash we：6255714 ay It H14 No 0026430	
Unita No Veh Dir E E 2 N		Event 2 none none	vent none none	Event 4 none none	Has Actlon Veh Typa none becup none． smltruck．			Damage itslde arme
W 14 Location 5 Nov crash Date：02／03／2006 montes 5 cVT：NOV：	RO（0．00） 50 feet Nof 33 mLe RD Day：Frl Howe bam Area：strghturel	Weather： anf c： 0 HBD：N	：rain	Roadtuay： 210）O： 3 Drugs：N	wel	Ligh How com	```Crash 5D: 6261750 awn d nt No:067953```	
Unik No Veh Dir 1 2		Evant none none	Event none none	zuent none none	Maz Ackton unable to stop none		ventrpe plekup 6ar	Damage vtims lftrear
＊ 45 Lecation： 13 MLt Cresh Date：04／29／2006 Injurtes k： 0 ©VTe NOVI	RD（2．01） 100 feet E of NOVI RD Dav：fry Hour： 6 pm Areas inter other	Weather： und CE HBD： N	clear	Roaduray： rnjo： 3 Drugs： N	$d r y$	Lesht How： com	Crash 20 day reand the No： 06276	6332080 662
Unt Wo Veh Dit 1 W 2 W 3 UN	Acton Prior Event 1 go straight parked vehtie stop on road vehin transpt unknown none	Event none none none	Event 3 none none none	Event nonte none none	Hace Action unable ro stop none none		Veh Tpe van． car unkn	Damage ctifint cerfor unkn
\＃ 16 Locationy 13 MLE Crash Dete：05／03／2006 zinuries K 0 cyt：NOVI	RO（2．03） 3 eel of NOVIRD Day：Wed Howr 13pm Ent A： 0 男 B： 0 Area：w／f intersecton	Weathert clear mile： 0 HED：N		Roadways dry 7no： 2 Druge N		Light：dark／untd How：fiolt Complaint No 0629237		

		MM：THTY		Whatindtin	Wyix.ix	jivex	Wivywix		Witix
120－14	0	0	0	0	0	0	1	0	4
	9	0	4	0	\％	4	䪤	1	4
$2 \mathrm{a}-3 \mathrm{a}$	1	0	0	0	0	0	0	0	4
	\％	4	0	0	4	4	，	6	0
$44^{4} \times 5$	0	0	0	0	0	0	0	0	0
	a	4	0	0	4	a	\％	4	a
5 Sa	0	0	0	0	0	0	0	0	0
	4	0	\％	0	4	0	\％	4	0
$6 \mathrm{a}+9 \mathrm{c}$	0	0	0	0	0	1	0	0	1
	3	曒	9	\％	0	\％	4	0	0
10\％－112	0	6	0	0	0	0	0	0	0
	8	等	0	0	0	\％	4	3	a
$12 \mathrm{p}-10$	0	0	0	0	0	0	0	0	0
	\％	0	1	6	1	0	0	8	\％
$2 \mathrm{~m}-3 \mathrm{p}$	\pm	1	0	0	0	1	0	0	3
\％－4p	\％	1	1	0	管	1	3	θ	\％
qp－5p	0	0	2	0	0	0	0	0	2
\％ 40	0	4	0	a	\％	\％	\％	0	1
65.70	0	0	0	0	0	1	0	0	1
\％－3\％	4	0	0	0	0	0	4	θ	${ }^{4}$
8 sp ． p	0	0	0	0	0	0	0	0	0
	\％	\％	0	0	＊	0	5	\％	1
10p 11 p	0	0	0	0	0	0	0	0	0
	0	\％	0	1	0	家	4	4	4
Unknown	0	0.	0	0	0	0	0	0	0
Hex	－	3	\％	2	2	\pm	－	1	\％

Crash Trpe		Lighe Condtion		Weather		noad Condtuon	
5axat	WyTx＝		Wuxavis		Wextix		U1＊
4	angle	3	dark／td	12	clear	0	debry
φ	hasaly	4	Wark combl	\％	autay	憡	W ${ }^{\text {c }}$
2	horls	1	dawo	0	fog／smbe	a	ley
\％		言	\％	管	为敞新	\％	Tuctay
6	prend	0	dusk	0	sev．wim	0	slushy
1		9	Q6tr	d		1	mave
1	adt	0	Unkia	3	smon	0	untri
0		Waxdex	43	合		\％	Mokt
0	ss\％op			0.	unkn	2	wer
\pm	－54 \％					，	綡

Vehicle Type	
Wertus	W
25	car
0	薙－kut
0	meycle
a	nowa
0	orvaty
0	other
8	pickup
＊	anturex
0	snowmoble
0	tuckobe
1	unkn
3	wam
	Wit

4tixt	K14x
3	lanuery
2	fremuay
\pm	Merch
1.	Apta
1	May
\％	
2	Jufy
1	
2	Septeniber
4	Octuer
0	November
1	bechates
Why	，

Hazardous Action	
WT3：	Hax
2	distod trafed
\％	fotue fedd
1	Improp backing
0	
0	Thproppassing
0	improatw
0	improp／to sight
0	䍃 br metar
1	negl diving
＊	nome
1	other
Q	Pede bratas
1.	tootast．
6	boamen
6	unabla to stop
3	unkerown
0	wrone way
Wra\％	H

Crash Severty						
	FATAL	A	a	c	Namin	Total
Persons	0	1	0	4	52	57
crashes	0	1	0	3	15	19

Alcohol in Crashes

	FATAL	PI	PD	Total
Drinking	0	4	0	1
No Drinking	0	3	15	18
Total	0	4	15	10

APPENDIXC:

PEAKHOUR SICNAL WIARRANT CUDELINES FOR MULTINAV STOP APPLICATIONS
(Excerpts fon 2005 Michigen Manual of Unhorm Trame Control Devices)

Guidance:

The combination of Conditions A and B is trended for application at locations where Condition A so satisfied and Condition B is not satisfied and should be plied only after adequate tat of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the tate problems.
Standard:
The need for a tate control signal shall be considered if an engineering study finds that both of the following conditions exist for each of any 8 hours of an average day?
A. The vehicles per hour given in both of the 80 percent column of Condition A in Table Ac-1 exist on the majorstreet and the higher-volume minowstree approaches, respectively to the intersection and
B. The vehicles per hour given in both of the 80 percent columns of Condition a in Table 4 C 1 exist on the majorstret and the higheruplume nino-street approaches, respectively to the intersection.
These major-street and minorstreet volumes shat be for the same 8 hours for each condition however, the 8 hours satisfied in Condition A shall not be required to be the same 8 hours satisfied in Condition B. On the minor street, the higher volume shall not be required to be on the same approach during each of the 8 hours.
Option:
It the posted or statutory speed lint or the 85 hapercentile speed on the major street exceeds $70 \mathrm{~km} / \mathrm{h}$ or exceeds 40 mph , or if the mersection hes within the builh-up area of an isolated community having a population of less than 10,000, the traffic volumes in the 56 percent columns in Table 4C-1 nay be used in place of the 80 percent colum.

Section AC. 03 Warrant 2 , Tour How Vehicular Volume

Support:
The Four Hour Vehicular Volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider instilling a traffic control signal.

Standard:

The need for a traffic control signal shall be considered if an engineering study finds that, for each of any 4 hours of an average day, the plotted points representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher- volume minor-street approach (one direction only) all fall above the applicable curve in figure 4C-1 for the existing combination of approach lanes, On the minor street, the higher volume shall not be required to be on the same approach during each of these 4 hours.
Option:
If the posted or statutory speed limit or the 85 th -percentile speed on the major street exceed $70 \mathrm{~km} / \mathrm{h}$ or exceeds 40 mph or if the mersection lies within the buitup tea of a isolated community having a population of les than 10,000. Figure $4 \mathrm{C}-2$ may be used in place of Figure $4 \mathrm{C}-1$.
Section 1 C 04 Warrant 3. Peak Hour

$$
\text { (Combines prestos Wemonts } 10,11 \text {) }
$$

Support:
The Peak Hour signal warrant is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an average day, the minot-stree traffic suffers undue delay when entering or crossing the major street.
Standard:
This signal warrant hal be applied only in manual cases, such as office complexes manufacturing plants, midustrial complexes, or high occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short the

The need for a tratie control signal shall be considered if an engineering study finds that the criteria in cher of the following two categories are met
A. Tall three of the following conditions exist for the same 1 how (any four conseative 15 -minute periods) of an average day:

1. The total stopped time delay experienced by the traffic on ore minotstret approach (one direction only) controlled by a STOP sign equals or exceeds: 4 vehiclehours for a one lane approach; or 5 yehiclehome for a two -lane approach, and
 vehteles per bom for one woving late of trafe or 150 wehicles per hour tor two moving lates, and
2. The total enteniag volume serviced during the hom equats or excects 650 vehcles per hour for Hitersectons with hree approaches or 800 vehicles per hour for mexsections with four or more approaches.
B. The phothed polnt representing he vehicles per hour on the major street (total of both appronches) and the corresponding vehtes per hour on the higher-volume minorstreet approach (one direction only) tor 1 hour (any four consecative 15 -minute periods) of ain average day talls above the applicable curve fin Higure 4 Cb 3 to the existing combination of approach lanes.
Option:
If the posted or statury speed limit or the 85 th-percentile speed on the maior street exceeds $70 \mathrm{~km} / \mathrm{h}$ of exceeds 40 mph, or if the intersection lies within the beit-up area of an isolated community having a population of less than 10,000 , Figure 4 C 4 may be used in place of Figure $4 \mathrm{C}-3$ to satisfy the criteria th the second category of the Standard.

Bection 1c. 45 Wartart 2 Pedestrian Volmue

Support:
The Pedestran Volme signal warran is thended for application where the tralfe volume on a major streef is so heavy that pedestians experience excessive delay in crossing the najor street.
Standard:
The need for a tratuc conirol signal at an Intersection or midblock crossing shan be considered uan engineering study hinds that both ol the Wollowing cevteria are met:
A. The pedestian volume crossing the major street at an hersection or midblock location during an average day is 100 or more for each of any hours or 190 or thote during any 1 hour and.
B. There are fever than 60 gaps per hour in the trafic stream of adequate length to allow pedestrians to cross during the same period when the pedestrian volume criferion is satistied, Were there is a divided stree having a median of suftident width for pedesctians to wat, the requirement applies separately to each direction of vehicular tratic.
The Pedestrian Votume signal warram shall not be appled at locations where the distance to the nearest trafie control signal along the major street is less than $90 \mathrm{~m}(300 \mathrm{ft}$, unless the proposed trafic control signal will not restrict the progressive novement of traffic.

IT this warrant is met and a rafic control signal is justifed by an engineering study the tratic control signal shall be equipped with pedestrian signal heads conforning to requirements set forth in Chapter 42 . Guidance:

If this warrant is met and a trafic control signal is justified by an engneeng study, then:
A. If at an intersection, the traffie control signat should be traffic-actuated and should include pedestrian detectors.
B. If at a nonhtersection crossing, the tratic control signal should be pedestrim-actuated, parkig and other sight obstructions should be prohibited for af least $30 \mathrm{~mm}(100 \mathrm{f})$ in advance of and at least $6 . \mathrm{m}$ (20 f) beyond the crosswalk, and the mstallation should include suitable standard signs and payement mandings,
C. Furthermore, if installed within a signal system, the tuafic control signal should be coordinated.

Option:
The criterion for the pedestrian volume crossing the major roadway may be reduced as much as 50 percent if the average crossing speed of pedestrians is less than $1.2 \mathrm{~m} / \mathrm{sec}(4 \mathrm{ft} / \mathrm{sec})$.

A traffic control signal may not be needed at the study location if adjacent coordinated traffic control siguals consistenty provide gaps of adequate length for pedestians to cross the street even if the xate of gap occurrence is less than one per minute.

Section 4C.06 Waran 5. School Crossing

Support

The School Crosing signal warrant is intended for application where fhe fact that school children cross the major street is the principal reason to consider installing a traffic control sigual.

*Noter 150 vph applios as the ower threshold volume tor a minorstreet approach with wo or more lanes and 100 vih applies as the fover threshold volunge or a minom-street approach with one lane.

Figure 46-4. Wamant 3 , peak Hour (70% Factor)
(COMUUNTY LESS THAN 10,000 POPULATON O A ABOVE 70 kmh OR ABOVE 40 mph ON MAJOR STREET)

*Note: 100 vph applies a the tower threshold volume for a minor-street approxch with two or more lanes and 75 yph applies as the lower Threshold volume for a minotstreet approach whth ona tane:
page $\mathrm{m}^{2} \mathrm{z}$
Once the decision has been made to mstall two-way stop contiol, the dection earang the appopmate stree to stop should be based on engineering Judgmeat. In most cases, the street carring the lowest volume of tratic should be stopped.

A STOP sign should not be instaled on the major street tmes justifed by a thefe ngineming sudy. Suport:

The followig are considerations that might influence the dection regarding the appropate street upon which to nistall a STOF sign where wo streets with relatively equal yolumes and/or characteristics infersect:
A. Stoping the direcion that conflicts he most with estabished pedestran crossing activity or school walking routes;
B. Stoping the direction that has obscured vison, dips or bumps that alteady regure drivers to nse lower operating speeds;
C. Stopping the direction that has the louges distance of minternpted fow approching the finterection; and
D. Stopping the direction that has the best sight distance to conflicting trafic:

The use of the STOP sign at higwayaniload grade crossings is described in Secton 8B.08. The use of the STOP sign at highway-light rail transit grade crossings is described in Section 10C04.

Section 23.06 STOP Sign Placoment

Standaud:

The STOR sign shall be installed on the right side of the approach to which tit applies. When the STOR sign is installed at this required location and the sign visibility is restrited, a Stop Ahead sign (see Section 2C29) shall be installed in adyance of the STOP sign.

The STOP sign shall be locted as close as practical to the intersection if regulates, while optimizing tis visibility to the road user if is intended to regulate.

STOP signs and XICLD signs shall not be mounted on the same post. Guidance:

Other than a DO NOT ENTER sign, no sign should be mounted back-to-back with a STOP sign ma manner that obscures the shape of the STOP sign.
Support:
Section $2 A .16$ contains additional information about separate and combined monnting of other sigus with STOP signs.
Gudance:
Stop lines, when used to supplement a STop sign, shonld be located at the point where the road user should stop (see Section 3B.16).

If only one STOP sign is installed on an appoach, the STOP sign should not be placed on the far side of the intersection.

Where two roads intersec at an acute angle, the STop sign should be positioned at an angle, or shielded, so that the legend is on of view of traffe to which it does not apply.

Where there is a maked crosswalk at the intersection, the STOP sign should be installed in advance of the crosswalk line nearest to the approaching traffic.
Option:
At wide-throat intersections or where two or more approach lanes of traffic exist on the signed approach, observance of the stop control may be improved by the installation of an additional STOP sign on the left side of the road and/or the use of a stop line. At chanelized hersections, the additonal STOP sign may be effectively placed on a channelizing island.
Support:
Figure 2A-2 shows examples of some typical placements of STOP signs.

Section 2B. 07 Nultiway Sfop Applications

Support:

Mutiway stop control can be useful as a safety measure at intersections if certain trafic conditions exist. Satety concens associated with multiway stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Multiway stop control is used where the volume of traffic on the intersecting roads is approximately equal.

The restrictions on the use of STOP signs descrbed in Section 2B. 05 also apply to multiway stop applications,

Guidunce:
The decision to fistall multiway stop control should be bised on an engineering study.
The following crievin should be considered in the engineering stidy for a mittiway sTop sigu installation:
A. Where trafic control signals are justfied, the multiway stop is an interim metsure that can be instatled quicky to control tratic while arangenents are being made tor the histallation of the taffic control signal.
B. A crach problem, as indicated by 5 or more xeported crathes m a 12 month period tha are susceptible to cotrection by a multway stop installation. Such crasbes include right and teftum collsions as well as tight-angle collisions.
C. Minimum volumes:

1. The vehicular volume entering the intersection from the mator street apponches fotal of both approaches) averages at least 300 vehicles per hour for my 8 hours of an averge day, and
2. The combined velicular, pedestian, and bicycle volume entering the intersection from the minor street approaches (total of both approaches) ayerages at least 200 units per hour for the same 8 hours, with an average delay to mino-street yehicular traffic of at least 30 seconds per vehicle diming thehighest hour, but
3. If the 85 th percentle apronch speed of the majom tree fraffo exceeds 65 koulh or exceeds 40 mph , the minimm velichlat volume watratts the 70 percent of the above values.
D. Where no single criterion is satisfed but where Critera B, C. . and C. 2 are at sutisfied to 80 percent of the minmun values, Citerion C 3 is exeluded from this condition.
Option:
Other ctiteria that may be considered in an engineeting study melude:
A. The need to control let-tum conilies;
B. The need to control vehcle/pedestitan conficts near locations that generate high pedestian volumes:
C. Locations where a road user, ffer stopping cannot see conflicting traffe and is not able to reasonably safely negotiate the intersection mess conflicting cross trafico is also tequired 10 stop, and
D. An intersection of two residential neigtbonood collector (througl) steets of similar design and operaing characteristes where multway stop control would improve traffic operational characteristics of the intersection.

Section 2 B .08 VLELD 5 m (EL -2)

Standard:

The vELD (24-2) sign (see Ggure 215-1) shall be a downvard-ponting equilateral thangle with a wide red border and the legend YivLD in red on a white background.

Support:

The YELD sign assigns rightof way to trafte on certan approvelies to an intersetion. Veheles controled by a YIELD sign need to slow down or stop when neeessary to avod interfering with conflicting traffic.

Secton 2R09 you LD Sign Applications

Option:

YIELD signs may be used instead of STOP signs it engineering judgment fidientes that one or nore of the following conditions exist
A. When the ability to see all potentialy conficting traffic is sufficient to allow a road user traveling at the posted speed, the 85 th-percentle speed, or the statory speed to pass through the intersection or to stop in a reasonably safe manner.
B. If controlling a merge-type novement on he entering roadway where acceleration geometry and/or sight distance is not adequate for merging traffic operation.
C. The second crossroad of a divided highway, where the median width the intersection is 9 m (30 ft) or greater. In this case, a STOP sign may be installed at the entrance to the first roadway of a divided highway and a YTELD sign may be installed at the entance to the second roadway.
D. An intersection where a special problem exists and where engineering judgment indicates the problem to be susceptible to correction by the use of the VIELD sign.

Standard:

A Yich 1 (M1-2) sign shall be msed to assign nght-ofway at the entrance to a roudabout intersecton.

APPENDLX D:

LEVEL OF SERVICE ANALYSES

WTERSECTON LEVELS OF SERVOE

Intersection capacity analyses were conducted using Synchro 7 sofware: based on methodologies contained in the Highway Capacity Manual (HCM, Transportation Research Board, 2000). The primary objective is to determine level of service, a qualitative measure of the "asse" of trafic flow based on average velicular delay. Analyical models are used to estimate the average delay per vehicle for specific movements, minor approaches - -and in the case of all-way stop-controlled and signalzed intersections major approaches and the overall intersection as well. These models account for lane configuration, grade, type of traffic control, traffic volune and composition, and other trafic flow parameters.

Level of service (LOS) is expressed using a letter grading scale, with A being the highest level and F being the lowest level. The following two tables deine LOS, in terms of average delay per vehicle, for signalized and unsignalized intersections, respectively. Intersections include junctions of driveways and roads as well as roads and roads.

Level of Service Criteria Yor Signalized Intersections

Level of Service	Control Delay per Vencle (seconds)
A	≤ 10
B	>10 and ≤ 20
C	>20 and ≤ 35
D	>35 and ≤ 55
E	>55 and ≤ 80
F	>80

Level or Service Crterla for Unsignalized Intersections

Level of Serice	Control Delay per Velicle (seconds)
A	≤ 10
B	>10 and ≤ 15
C	>15 and ≤ 25
D	>25 and ≤ 35
E	>35 and ≤ 50
F	>50

According to the Highway Capacily Manual, level of service at a two-way stop-controlled intersection is defined only for minor movements (i.e, minor approach left and right turns and major approach left turns). LOS is not defined for the intersection as a whole, since the majority of vehicles pass through the intersection without stopping and thus experience negligible delay.

It is important to realize how HCM methodology computes average approach delay and average intersection delay al a one-or wo-way-stop-controled intersection where leff turns from the major road share a single lane with through (and possibly right-turning) traffic. In applying the equations for weighted average delay, the methodology assumes zero delay for major-road through and right-turning trafic (believing them to be negligible), but then divides by the total approach (or intersection volume). Hence, the resulting average delay per vehicle is generally significantly lower than what the average lefturn delay per left-tum vehicle would be il, in fact, the latter was actually reported by the sotware (it is not), Caution should therefore be used in interpreting the reported average delay per vehicle on approaches and at intersections having shared (lett-through or left-through-right) lanes on the major road.

HCM Signalized Intersection Capaoly Analysis 3: South Lake Dr \& 13 Mile Rd

HCM Unsignalized Intersection Capacity Analysis 3 South Lake Dr \& 13 Mile Rd

mersecton Suminey

Delay

HCMLevel of Senice Intersecion Capacity Ulization Analysis Period (nin)
$B .6$
A
233%
15

ICU Level of Survice

HCM Unsignalized Intersection Capaciy Analysis 3. South Lake Dr \& 13 MileRd

Delay	91		
HCM Level of Service	A		
Intersection Capacily Ufilzation	27.6%	ICULevel of Somice	A
Analysis Period (min)	15		

HCM Signalized Intersection Capacty Analysis B: South Lake Dr 813 Mile Rd

HCM Unsignalized Intersection Capacty Analysis 3: South Lake Dr \& 13 Mile Rd

* \$ \quad * *

HCM Unsignalized Intersecton Capacity Analysis 3. South Lake Dr 813 Mile Rd

4) 4 \&

Movencil	8ter	SEP	NE	Ne	sWIT	SW8
Lane Configurations	\%		\%	4	T	
Sign Control	Stop			Slop	Stop	
Volume (ivt)	124	41	85	90	48	233
Peak Hour Faclor	0.85	0.85	0.92	0.92	0.87	087
Houty flow rate (yph)	146	48	92	98	55	268

interseclon Sunmay

Delay
HCM Level of Service. A
Intersection Capacily Uitization 30.4%
Antysis Period (min)

ICU Level of Service

A

[^0]: 1. Leve of sevice (LOS) based on average delay per vehide the later compuled with Syohro 70 sofware based on the Highway Capacily Mantul, Special Repont 209, Transportation Research Boad, 2000, Sea Appendx D for detalis.

 ${ }^{3} L=$ leif tum, T dhrough moventen, and $R=$ fight lum.
