NOV cityofnovi.org

CITY of NOVI CITY COUNCIL

Agenda Item C November 23, 2009

SUBJECT: Approval of Traffic Control Orders 09-07 for the installation of a stop sign on southbound Town Center to stop at Eleven Mile Road, 09-08 for northbound Town Center to stop at Eleven Mile Road, and 09-09 requiring that northbound Town Center right lane traffic must turn right to eastbound Eleven Mile Road.

SUBMITTING DEPARTMENT: Department of Public Services, Engineering Division 670

CITY MANAGER APPROVAL

BACKGROUND INFORMATION:

In response to several complaints and a high frequency of preventable crashes at the intersection of Town Center Drive and 11 Mile Road, the Engineering Division and our traffic Consultant, Birchler Arroyo, have completed a traffic study of the intersection. Both 11 Mile approaches are currently controlled by stop signs, while Town Center is not. There have been approximately 15 crashes at this intersection in the past 4 ½ years, of which 13 crashes (87%) were attributable to drivers on 11 Mile Road that either failed to yield, disregarded the stop sign, or were unable to stop for some other reason. Additionally, we have received several phone calls from motorists expressing concern about the safety of the intersection – mostly related to sight distance.

The enclosed report from Birchler Arroyo recommends that the existing two-way stop control at the intersection be replaced by a four-way stop control. The report identifies that the four-way stop control is warranted by the number of crashes at the intersection, the observed traffic volumes, and the lack of sight distance (see photos in report). The traffic analysis indicates that the intersection level of service (LOS) in most cases would improve from as low as LOS D to as high as LOS A as a result of the four-way stop control.

The implementation can be completed under our existing pavement marking contract and using Department of Public Services staff to install the signage.

RECOMMENDED ACTION: Approval of Traffic Control Orders 09-07 for the installation of a stop sign on southbound Town Center to stop at Eleven Mile Road, 09-08 for northbound Town Center to stop at Eleven Mile Road, and 09-09 requiring that northbound Town Center right lane traffic must turn right to eastbound Eleven Mile Road.

1	2	Y	N
	1	1 2	1 2 Y

	1	2	Y	N
Council Member Margolis				
Council Member Mutch				
Council Member Staudt				

CITY OF NOVI TRAFFIC CONTROL ORDER

	SPEED	DATE OF ORDER: NOVEMBER 12, 2009
	PARKING	
X	OTHER	CONTROL NUMBER: 09-07

PURSUANT TO CHAPTER NO. 33 OF THE CODE OF ORDINANCES OF THE CITY OF NOVI, MICHIGAN, SAME BEING THE UNIFORM TRAFFIC CODE FOR CITIES, TOWNSHIPS AND VILLAGES OF MICHIGAN AND IN THE INTEREST OF PUBLIC SAFETY AND CONVENIENCE THE FOLLOWING TRAFFIC CONTROL ORDER IS HEREBY ISSUED BY BRIAN COBURN, SENIOR CIVIL ENGINEER, DULY AUTHORIZED AS TRAFFIC ENGINEER, BY SEC. 33.141 OF THE AFORESAID CHAPTER.

ISSUANCE OF THIS TRAFFIC CONTROL ORDER WAS PRECEDED BY STUDY AND INVESTIGATION OF TRAFFIC CONDITIONS ON THE FOLLOWING PUBLIC ROAD OR ROADS IN THE CITY OF NOVI, MICHIGAN.

TOWN CENTER

AND AFTER SAID INVESTIGATION, IT IS HEREBY ORDERED AND DIRECTED THAT THE DEPARTMENT OF PUBLIC SERVICES ERECT AND MAINTAIN THE <u>STOP</u> SIGN (S) IN ACCORDANCE WITH THE MICHIGAN MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES AS REQUIRED BY SEC. 33.217 OF THE AFORESAID CHAPTER, SAID SIGNS TO GIVE NOTICE OF THE FOLLOWING DETERMINATION:

SOUTH BOUND TOWN CENTER TO STOP AT ELEVEN MILE ROAD

FRAFFIC ENGINEER-BRIAN COBURN

DATED: 11/12/2009

APPROVED BY CITY COUNCIL

TRAFFIC CONTROL ORDER NUMBER <u>09-07</u> HAVING BEEN PRESENTED TO THE COUNCIL OF THE CIT OF NOVI, MICHIGAN FOR STUDY AND APPROVAL, IS HEREBY APPROVED AND IT IS HEREBY ORDEED AND DIRECTED THAT THIS ORDER BE FILED IN THE OFFICE OF THE CITY CLERK AND A COP THEREOF IN THE OFFICE OF THE CHIEF OF POLICE OF SAID CITY.

IT IS FURTHER ORDERED AND DIRECTED THAT THIS ORDER SHALL BECOME EFECTIVE UPON BEING FILED WITH THE CLERK AND UPON ERECTION OF ADEQUATE SIGNS GIVING NOTICE OF THE EXISTENCE OF AFORESAID,

SOUTH BOUND TOWN CENTER TO STOP AT ELEVEN MILE ROAD

ADOPTED AT THE REGULAR MEETING OF COUNCIL ON	BY: Mayor - David Landry
	By:City Clerk - Marvanne Cornelius

CITY OF NOVI TRAFFIC CONTROL ORDER

	SPEED	DATE OF ORDER: NOVEMBER 12, 2009
	PARKING	
X	OTHER	CONTROL NUMBER: 09-08

PURSUANT TO CHAPTER NO. 33 OF THE CODE OF ORDINANCES OF THE CITY OF NOVI, MICHIGAN, SAME BEING THE UNIFORM TRAFFIC CODE FOR CITIES, TOWNSHIPS AND VILLAGES OF MICHIGAN AND IN THE INTEREST OF PUBLIC SAFETY AND CONVENIENCE THE FOLLOWING TRAFFIC CONTROL ORDER IS HEREBY ISSUED BY BRIAN COBURN, SENIOR CIVIL ENGINEER, DULY AUTHORIZED AS TRAFFIC ENGINEER, BY SEC. 33.141 OF THE AFORESAID CHAPTER.

ISSUANCE OF THIS TRAFFIC CONTROL ORDER WAS PRECEDED BY STUDY AND INVESTIGATION OF TRAFFIC CONDITIONS ON THE FOLLOWING PUBLIC ROAD OR ROADS IN THE CITY OF NOVI, MICHIGAN.

TOWN CENTER

AND AFTER SAID INVESTIGATION, IT IS HEREBY ORDERED AND DIRECTED THAT THE DEPARTMENT OF PUBLIC SERVICES ERECT AND MAINTAIN THE <u>STOP</u> SIGN (S) IN ACCORDANCE WITH THE MICHIGAN MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES AS REQUIRED BY SEC. 33.217 OF THE AFORESAID CHAPTER, SAID SIGNS TO GIVE NOTICE OF THE FOLLOWING DETERMINATION:

<u>NORTH BOUND TOWN CENTER TO STOP AT ELEVEN N</u>	<u>MILE ROAD</u>
	FRAFFIC ENGINEER BRIAN COBURN

DATED: 11/12/2009

APPROVED BY CITY COUNCIL

TRAFFIC CONTROL ORDER NUMBER <u>09-08</u> HAVING BEEN PRESENTED TO THE COUNCIL OF THE CIT OF NOVI, MICHIGAN FOR STUDY AND APPROVAL, IS HEREBY APPROVED AND IT IS HEREBY ORDEED AND DIRECTED THAT THIS ORDER BE FILED IN THE OFFICE OF THE CITY CLERK AND A COP THEREOF IN THE OFFICE OF THE CHIEF OF POLICE OF SAID CITY.

IT IS FURTHER ORDERED AND DIRECTED THAT THIS ORDER SHALL BECOME EFECTIVE UPON BEING FILED WITH THE CLERK AND UPON ERECTION OF ADEQUATE SIGNS GIVING NOTICE OF THE EXISTENCE OF AFORESAID,

NORTH BOUND TOWN CENTER TO STOP AT ELEVEN MILE ROAD

ADOPTED AT THE REGULAR MEETING	BY:
OF COUNCIL ON	Mayor - David Landry
	Ву:
	City Clerk - Maryanne Cornelius

CITY OF NOVI TRAFFIC CONTROL ORDER

SPEED PARKING	DATE O	F ORDER:	November 12, 2009
X OTHER	CONTR	OL NUMBER:	09-09
PURSUANT TO CHAPTER NO. 33 OF THE BEING THE UNIFORM TRAFFIC CODE FOR INTEREST OF PUBLIC SAFETY AND CONVISSUED BY BRIAN COBURN, SENIOR CIVIL 33.141 OF THE AFORESAID CHAPTER.	R CITIES, TOWNSHIPS ENIENCE THE FOLLOW	AND VILLAGE	ES OF MICHIGAN AND IN THE CONTROL ORDER IS HEREBY
ISSUANCE OF THIS TRAFFIC CONTROL OR CONDITIONS ON THE FOLLOWING PUBLIC			
TOWN CENTER			
AND AFTER SAID INVESTIGATION, IT IS HER PUBLIC SERVICES ERECT AND MAINTAIN T MICHIGAN MANUAL OF UNIFORM TRAFFIC AFORESAID CHAPTER, SAID SIGNS TO GIVE	HE <u>MUST TURN RIGHT</u> CONTROL DEVICES AS	SIGN (S) IN ACREQUIRED BY	CCORDANCE WITH THE Y SEC. 33.217 OF THE
NORTH BOUND TOWN CENTER RIGHT LAN		í	
		ENGINEER-B	RIAN COBURN
	DATED:	11/12/2009	
APPROVED BY CITY COUNCIL			
TRAFFIC CONTROL ORDER NUMBER <u>09-09</u> NOVI, MICHIGAN FOR STUDY AND APPROVA DIRECTED THAT THIS ORDER BE FILED IN TO OFFICE OF THE CHIEF OF POLICE OF SAID	AL, IS HEREBY APPROV THE OFFICE OF THE CIT	ED AND IT IS	HEREBY ORDEED AND
IT IS FURTHER ORDERED AND DIRECTED T WITH THE CLERK AND UPON ERECTION OF AFORESAID,			
NORTH BOUND TOWN CENTER RIGHT LAN	MUST TURN RIGHT		
ADOPTED AT THE REGULAR MEETING OF COUNCIL ON	ВУ	: Mayor - David	d Landry

By: City Clerk - Maryanne Cornelius

November 13, 2009

Brian T. Coburn, P.E.
Engineering Div., Dept. of Public Services
City of Novi
26300 Delwal Drive
Novi, MI 48375
bcoburn@cityofnovi.org

Subject: Traffic Study Report for Intersection of Eleven Mile Road and Town Center Drive

Dear Mr. Coburn:

We have completed our study of the above intersection, conducted per the City-approved proposal of August 13, 2009. This report summarizes our recommendations and the supporting analyses.

Recommendations

- The existing two-way stop control at Eleven Mile and Town Center should be replaced by fourway stop control.
- 2. The right lane on the northbound approach should be marked and signed for right turns only, eliminating the need for merging as northbound traffic passes through the intersection.
- The sidewalks along the east side of Town Center should be realigned near Eleven Mile to facilitate a north-south crosswalk nominally parallel to Town Center, pedestrian ramps should be provided on all corners, and crosswalks should be striped on all four intersection legs.
- Stop bars should be placed on the north-south approaches, and the existing stop bar on the westbound approach relocated closer to (within 4-6 ft of) the recommended crosswalk.
- The north-facing Keep Right sign on the landscaped median should be relocated closer to the intersection and mounted on a breakaway post. A supplemental south-facing STOP sign (and 4-WAY) sign should be mounted on the back of the Keep Right sign.

Existing Conditions

The subject intersection is located at the southeast corner of the Novi Town Center (Figure 1). The nearest traffic signals are at the intersections of Town Center Drive and Grand River Avenue (a short block to the south) and Eleven Mile Road and Meadowbrook Road (about ¾ mile to the east). The intersection of Town Center Drive and Crescent Boulevard is controlled by 3-way STOP signs. Speed limits are currently 25 mph on Town Center Drive and 30 mph on Eleven Mile Road.

Figure 1. Vicinity Aerial

As can be seen in Figure 2, the Eleven Mile / Town Center intersection has a different lane configuration on each approach. The eastbound approach has a single (left-through-right) lane, and the westbound approach has a left-turn-only lane and a shared through-right lane. The northbound approach has a left-turn-only lane, one through lane, and one lane dropping at Eleven Mile but not currently marked as a right-turn-only lane. The southbound approach has a left-turn-only lane adversely offset from the opposing northbound left-turn-only lane, plus one through lane. A second southbound through lane starts at Eleven Mile and extends to Grand River.

Both Eleven Mile Road approaches to Town Center Drive are controlled by STOP signs, supplemented for the past few months by CROSS TRAFFIC DOES NOT STOP signs. These supplemental signs were added after a citizen expressed concern that some drivers do not seem to realize that traffic on Town Center does not also have to stop, and the 2005-2007 crash history appeared to support that theory.

Continuing concerns about the intersection's safety prompted this more comprehensive review. Birchler Arroyo first conducted a field inspection, taking the photographs included here (as Figures 3-6) and also estimating intersection (or corner) sight distance to the north and south.

The City of Novi (per Design and Construction Standards Figure VIII-E) requires at least 280 ft of corner sight distance relative to a crossroad with a 25-mph speed limit, measured (in the general case) from 20 ft in advance of the near edge of that crossroad. Current national standards (per AASHTO's 2004 Policy on Geometric Design of Highways and Streets) call for 335 ft for left turns and 290 ft for through movements and right turns, both measured (in the general case) from 14.5 ft in advance of the crossroad's near edge (for the 30-mph design speed typically associated with a 25-mph speed limit).

Sight distance observations were first made relative to the above general guidelines. The only deficient observation was between the eastbound and southbound approaches from 20 ft in advance of Town Center, where the available sight distance was found to be only 180 ft – or 100 ft short of the City standard. All other observations found essentially unlimited sight distance.

The overall sight distance situation at this intersection is worse than the above findings might suggest. We believe that it is inappropriate – given the existing stop bar locations – to determine sight distance from 14.5 ft, or even as much as 20 ft, in advance of Town Center. To reach those standard sighting points, approaching vehicles must go well beyond the stop bars; this encourages drivers to pass over the implied crosswalk locations at some speed.

Furthermore, it is apparent in Figures 3-4 that the sight lines on the more critical eastbound approach are severely limited by solid wood fencing around the electrical transformers. From a typical driver viewing position 7 ft in advance of the stop bar, it was estimated that the corner sight distance to the center of the near through lane is only about 125 ft to both the north and south.

Corner sight distance was not estimated on the westbound approach, but it is apparent in Figures 5-6 that the sight distance in both directions is unnecessarily limited by the placement of the stop

Figure 2. Birdseye Aerial

Proposed Volume Counting Location

Figure 3. Looking Northeast from Eastbound Eleven Mile

Figure 4. Looking Southeast from Eastbound Eleven Mile

Figure 5. Looking Northwest from Westbound Eleven Mile

Figure 6. Looking Southwest from Westbound Eleven Mile

bar well in advance of the implied (but unmarked) crosswalk (there is no need to place a stop bar at the ends of the curb returns, as was done in this location).

Given the sight distance limitations described above, drivers on Eleven Mile (especially those approaching from the west) are forced to pull up to or into the intersection to acquire barely enough sight distance to proceed safely. Drivers proceeding to the more forward position – without first pausing at the stop bar – endanger pedestrians and bicyclists using the sidewalk, and may startle approaching drivers on Town Center.

Crash History

To determine whether or not the problematic sight distance identified above is affecting safety, crash data were obtained from the Traffic Improvement Association (TIA) for the latest available 4½ calendar years, from January 1, 2005 through June 30, 2009. These data are detailed in Appendix A and summarized in Table 1 (below). Key findings are as follows:

Thirteen of the 15 reported crashes (87	%) were angle collisions,	all involving drivers on
Eleven Mile failing to yield, disregarding	the STOP sign, or being	"unable to stop."

Five of the eastbound "failures to yield" to cross traffic occurred with a 12-month period,
specifically, between 11-21-07 and 8-23-08. This frequency of preventable crashes
meets one of the criteria for the installation of multi-way stop control (per Section 2B.07
of the 2005 Michigan Manual on Uniform Traffic Control Devices). One of these five
crashes involved possible personal injury (severity level C).

Table 1. Most Recent 41/2-Year Crash History for Intersection of Eleven Mile and Town Center1

Year				Crash Type						Crash Severity			
	Date	Hour			Sides	Sideswipe					Property	Possible	
	Date	Tioui	Angle	Head- On	Opposite Direction	Same Direction	Rear- End	Single- Vehicle	Fatal	Personal Injury	Damage Only (PDO)	Causal Factors	
09	01-26	8 am	•								0	EB vehicle failed to yield to NB.	
	08-23	12 pm	•								•	EB vehicle failed to yield to NB.	
80	04-13	10 am	•							0	100	EB vehicle failed to yield to NB.	
	03-04	12 pm	•								•	EB vehicle failed to yield to NB.	
	12-20	4 pm	9		1						•	EB vehicle failed to yield to SB.	
07	11-21	6 pm	•								•	EB vehicle failed to yield to NB.	
01	06-30	7 pm						0			0	WB left turn hit sign in median.	
	03-05	12 pm	•								•	WB vehicle failed to yield to SB.	
	12-22	8 am										WB disregarded STOP and hit SB.	
06	06-25	12 pm	0							•		WB "unable to stop" and hit NB.	
	04-24	1 pm	0								0	EB vehicle failed to yield to NB.	
	12-16	1 pm					•				•	WB vehicle unable to stop on snow.	
05	10-18	4 pm	9							•		EB vehicle failed to yield to NB.	
00	08-15	9 pm	0								•	EB vehicle failed to yield to NB.	
	05-20	11 am	0			-				•		EB vehicle failed to yield to SB.	
	Totals		13	0	0	0	1	1	0	4	11		

January 1, 2005 through June 30, 2009, inclusive. See detailed printouts provided by Traffic Improvement Association. NOTE: Shaded rows identify five or more crashes preventable with multi-way stop control within a 12-month period

Traffic Counts

To facilitate an evaluation of alternative forms of traffic control at Eleven Mile and Town Center, City staff installed automated (hose) counters on each of the four intersection approaches (see Figure 2). Counts were then were conducted over several typical weekdays as well as a typical weekend. The results are detailed in Appendix B and partially summarized below.

Table 2. Approach Volumes in Eight Busiest Hours of the Day

User Factors	Approach						
Hour Ending	EB	WB	NB	SB	Total		
		Average	Weekday				
12:00 p	133	202	162	163	658		
1:00 p	207	275	233	237	951		
2:00 p	160	240	181	217	796		
3:00 p	105	166	146	173	588		
4:00 p	84	148	152	151	534		
5:00 p	94	175	147	177	592		
6:00 p	126	201	195	191	712		
7:00 p	138	171	184	189	681		
		Satu	rday				
1:00 p	92	100	220	149	561		
2:00 p	108	92	209	158	567		
3:00 p	95	72	214	151	532		
4:00 p	102	80	225	175	582		
5:00 p	103	78	260	157	598		
6:00 p	151	87	313	171	722		
7:00 p	174	98	263	204	739		
8:00 p	153	61	194	209	617		

To facilitate an evaluation of peak-hour delays and levels of service, Birchler Arroyo conducted manual turning-movement counts 12:00-2:00 p.m. and 5:00-7:00 p.m. on a typical weekday, and 5:00-7:00 p.m. on a typical Saturday (i.e., during the shaded busiest hours in Table 2). The results are detailed in Appendix C and summarized (for the corresponding peak hours) in Figure 7.

Peak-Hour Levels of Service

Synchro 7 capacity analysis software was used to predict average vehicular delays, associated levels of service, and queue lengths. As briefly explained at the beginning of Appendix D, the level of service (LOS) for a traffic movement, approach, or intersection is a letter grade between A and F, assigned by

the analysis software based on the average delay per vehicle predicted in a computer simulation. An overall level of service of D or better is typically sought in an urban or suburban area.

Table 3 (on next page) summarizes the LOS results obtained from our analysis of the subject intersection. Results are provided for both the existing two-way stop control and potential four-way stop control. Highlights of these results are as follows:

- Only the westbound left turn during the weekday peak hours now experience a level of service as low as D, normally considered the minimum acceptable for an urban area. Overall, the Eleven Mile Road approaches currently operate at LOS B or C, and the left turns from Town Center operate at LOS A.
- With installation of four-way stop control, all movements and the overall intersection would operate at LOS A or B. Average delays would range from 8-13 sec per vehicle.

Evaluation of Criteria for Multi-Way Stop Control

The relevant excerpt from the 2005 *Michigan Manual on Uniform Traffic Control Devices* appears in Appendix D. According to the MMUTCD, "multi-way stop control is used where the volume of traffic on the intersecting roads is approximately equal." The counts summarized in Table 2 show that this condition is met at Eleven Mile and Town Center.

Furthermore, specific MMUTCD criteria satisfied by the data collected in this study are as follows:

- ☐ Crashes (guideline B) There were "5 or more reported crashes in a 12-month period... susceptible to correction by a multi-way stop installation."
- Minimum Volumes (guideline C) Total current volumes on Town Center exceed 300 vehicles per hour in the 8 busiest hours of the weekday, total current volumes on Eleven Mile exceed 200 vehicles per hour in those same 8 hours, and westbound left turns from Eleven Mile experience over 30 seconds of delay per vehicle during the highest hour.
- Sight Distance (optional criterion C) Based on the above observations and discussion, Eleven Mile and Town Center is a location "where a road user, after stopping, cannot see conflicting traffic and is not able to reasonably safely negotiate the intersection unless conflicting cross traffic is also required to stop."

Lane Usage

The above level of service analyses, showing that the intersection will operate very satisfactorily with four-way stop control, assumed (due to a limitation of the traffic model) that the northbound approach consists of a left-turn lane and a single through-right lane. It is reasonable to conclude that *any* use of the extra northbound through lane that actually exists will only result in even more favorable levels of service. We recommend that this fact be utilized to mark and sign the northbound right lane for right turns only, simplifying driver and pedestrian expectations and further enhancing traffic safety.

Table 3. Levels of Service at Eleven Mile and Town Center¹

	Maria	Wee	kday 12:30-1:30	p.m.	We	ekday 5:00-6:00	pm	Saturday 6:00-7:00 p.m.		
Approach ²	Move- ment ³	Volume (veh)	Avg. Delay (sec/veh)	LOS	Volume (veh)	Avg. Delay (sec/veh)	LOS	Volume (veh)	Avg. Delay (sec/veh)	LOS
				Existing	Two-Way Sto	p Control		·		
EB	All	202	24.3	C	103	14.0	В	130	13.6	В
	L	43	27.6	D	119	31.3	D	12	17.6	С
WB	T+R	157	14.6	В	166	15.7	С	81	12.1	В
	All	200	17.4	С	285	22.2	С	93	12.8	В
NB	L	38	7.8	Α	43	7.7	Α	65	7.7	A
SB	L	70	7.7	Α	54	7.8	A	35	7.5	A
				Potential	Four-Way Sto	op Control ⁴		-		
· A	11	826	11.3	В	810	10.9	В	586	9.1	Α
EB	All	202	13.0	В	103	10.9	В	130	10.1	В
	L	43	9.5	А	119	11.1	В	12	8.3	А
WB	T+R	157	10.5	В	166	10.7	В	81	8.2	Α
10000	All	200	10.3	В	285	10.9	В	93	8.3	А
	L	38	9.4	Α	43	9.4	Α	65	8.7	Α
NB	T+R	145	10.8	В	183	11.4	В	113	8.5	Α
	All	183	10.5	В	226	11.0	В	178	8.6	Α
	L	70	10.0	А	54	9.7	A	35	8.3	Α
SB	T+R	171	11.8	В	142	11.2	В	150	9.5	Α
	All	241	11.3	В	196	10.8	В	185	9.3	А

Level of service (LOS) based on average delay per vehicle, the latter computed with Synchro 7 software based on Highway Capacity Manual (Special Report 209, Transportation Research Board, 2000). See Appendix D for details.

² EB = eastbound, WB = westbound, NB = northbound, and SB = southbound.

³ L = left turn, T = through, and R = right turn.

⁴ Since Synchro / HCM is unable to model more than two lanes on an approach to an all-way stop, the NB approach was assumed to have a left-only lane and a shared through-right lane. The actual LOS produced in reality (with a left-only lane, through-only lane, and right-only lane should therefore be somewhat better than tabulated here.

Sincerely,

BIRCHLER ARROYO ASSOCIATES, INC.

Rodney L. Arroyo, AICP

Vice President

William A. Stimpson, P.E.

William a. Stimpson

Director of Traffic Engineering

APPENDIX A:

CRASH DATA

Intersection Crash Report

For Sgt. Terry L. Whitefield (Town Center Drive & 11 Mile Road)

Date Range - 1/1/2005 to 12/31/2007 Prepared by Traffic Improvement Association

Crash Dat	Crash Data Report Date Range - 1/1/2005 to 12/31/2007							Pages: Printed:	1/5 10/08/2008
Crash Date:		05 Day: Inj A:		: 11 Weather:	clear	Roadway: o	iry	Crash ID: Light: day Flow: angle	6058375
Unit No	Ven Dir	Action Prior	Event 1	Event 2	Event 3	Event 4	Haz Action	Van Type	Damage
1 2	E S	right lurn go straight	veh in transpt veh in transpt	none none	none none	none	fail to yield none	car car	litfrnt rtside
#2 Locat Crash Date: Injuries K: CVT: 62			S inl 0	: 21 Weather:	clear	Roadway: (Inj D: 3	dry	Crash ID: Light: dark/ltd How: angle	6097191
Unit No	Ven Dir	Action Prior	Event 1	Event 2	Event 3	Event 4	Haz Astion	Van Type	Damage
1 2	E	go straight go straight	veh in transpt veh in transpt	none none	none none	none	disrgd traf ctl none	smltruck smltruck	ctrirnt litimt
#3 Locat Crash Date: Injuries K: CVT: 62		05 Day: Inj A:		: 16 Weather:	clear	Roadway: Inj 0: 1	dry	Crash ID: Light: day How: angle	6154164
Unit No	Veh Oir	Action Prior	Event 1	Event 2	Event 3	Event 4	Haz Action	Veh Type	Camage
1 2	E N	start on road go straight	veh in transpt veh in transpt	none	none none	none	fail to yield none	car	rtfrot Htfrot

Crash Da	ta Rep	ort			Pages: Printed:	2/5 1 0/08/2 008			
#4 Loca Crash Date: Injuries K: CVT: 62	12/16/2	2005 Day: Inj A:		13 Weather:	snow	Roadway: Inj 0: 3	snowy	Crash ID: Light: day How: rr-end	6231085
Unit No	Veh Dir	Action Prior	Event 1	Event 2	Event 3	Event 4	Haz Action	Veh Type	Damage
1 2	W	stop on road stop on road	cargo loss/shft loss of control	none parked vehicle	none	none none	none unable to stop	car	ctrrear ctrimt
#5 Loca Crash Date Injuries X: CVT: 62	04/24/	2006 Day: Inj A:		: 13 Weather:	cloudy	Roadway: Inj 0: 2	dry	Crash ID: Light: day How: angle	6325351
Unit No	Veh Di	Action Prior	Event 1	Event 2	Event 3	Event 4	Haz Action	Vah Typa	Damago
1 2	E	go straight go straight	veh in transpt veh in transpt	none	none	none	fail to yield none	van	ctrfrnt Iftside
#6 Loca Crash Date Injuries K: CVT: 62	: 06/25/	2006 Day: Inj A:	feet E of TOWNCEN' Sun Hour 0 Inj B w/i intersection	: 12 Weather:	cloudy	Roadway: inj 0: 0	dry	Crash ID; Light: day How; angle	6376210
Unit No	Veh Di	r Action Prior	Event:	Event 2	Event 3	Event =	Haz Action	Veh Typs	Dantaga
1 2	N	go straight go straight	veh in transpt veh in transpt	none	none	none none	unable to stop none	car	ctrfrni rtside
#7 Local Crash Date Injuries IX: CVT: 62	: 12/22	2006 Day: inj A:		: 8 Weather:	fog/smke	Rozdwzy; inj 0; 2	wel	Crash ID: Light: dawn How: angle	6550423

Event 3

none

none

Event 4

none

none

Haz Action

disrgd traf ctl

none

Veh Type

car

car

Damage

rtímt

litside

Action Prior

go straight

left turn

Evant 1

veh in transpt

veh in transpt

Event 2

none

none

Unit No Veh Dir

2

W

S

Crash	Data	Report

Date Range - 1/1/2005 to 12/31/2007

Pages: Printed:

3/5 10/08/2008

6618297

Location: 11 MILE RD (0.00) 0 feet X of TOWN CENTER Crash ID:

Crash Date: 03/05/2007 Injuries K: 0

Day: Mon inj A: 0

Hour: 12 inj B: 0

Weather: clear Inj C: 0

Roadway: dry

Light: day

CVT: 62 Area: w/i intersection

HBD: 0

ini O: 3 How: angle

Action Prior Event? Event 4 Haz Action Veh Type Damage Unit No Van Dir Event 2 Event 3 1 W go straight veh in transpt fail to yield ctrfrat none none none car 2 S veh in transpt Iffiside go straight none none none none car

Location: TOWN CENTER DR (0.12) 40 feet S of 11 MILE RD

Crash ID:

6712978

Crash Date: 06/30/2007 Injuries K: 0

Day: Sat ini A: 0

Hour: 19 Inj B: 0

Weather: cloudy inj C: 0

Roadway: dry

Light: day

MBD: 0

Ini C: 1

How: single

CVT: 62

Area: w/i intersection

Unit No Veh Dir Action Prior Event : Event 2 Event 3 Haz Action Damage Event 4 Veh Type 1 W left turn Iftfrni curb traff sign post improp turn none none car #10 Location: 11 MILE RD (0.00) 20 feet E of TOWN CENTER DR 6837174 Crash ID:

Crash Date: 11/21/2007 Injuries K: 0

Cav: Wed Ini A: 0

Hour: 18 Inj B: 0

Weather: rain Ini C: 0

Roadway: wel

Light: dark/ltd

CVT: 62

Area: w/i intersection

HBD: 0

Ini 0: 2

How: angle

Unit No Veir Dir Action Prior Event 1 Event 2 Event 3 Evan: 4 Haz Action Van Typa Damage E go straight veh in transpt disrgd traf ctl rlside 1 none none none car 2 N veh in transot ctrfrnt go straight none none none car none #11 Location: TOWN CENTER (0.12) 15 feet E of ELEVEN MILE Crash ID: 6871023

Crash Date: 12/20/2007 Injuries K: 0

Day: Thu Inj A: 0

Hour: 16 Ini B: 0

Weather: clear Inj C: 0

Roadway: dry Inj 0: 2

Light: day

CVT: 62

Area: strght.unrel

H3D: 0

How: angle

Unit No Ven Dir Action Prior Event 1 Event 2 Event 3 Event 4 Haz Action Van Type Damage veh in transpt ctrirnt E start on road none none none fail to yield ca: 2 S rtirn! ven in transpt none go straight none none none car

Crash	Data	Re	port
010011	2000	100	2012

Date Range - 1/1/2005 to 12/31/2007

Pages: 4/5 Printed: 10/08/2008

Crash Type	Vehicle Types	Hazardous Action	Crashe	s by Mo	nth
0 unknown	0 unknown	10 none	Jan	Ū	0%
1 single	18 car	0 loo fast	Feb	0	0%
0 head on	1 van	0 too slow	Mar	1	9.1%
0 ho-ll	0 pickup	5 fail to yield	Apr	1	9.1%
9 angle	2 smltruck	3 disrgd traf ctl	fylay	1	9.1%
1 rr-end	0 mcycle	0 wrong way	Jun	2	18.2%
0 rr-It	0 moped	0 left of center	Jul	0	0%
0 rr-rl	0 go-cart	0 improp passing	Aug	1	9.1%
0 ss-same	0 snowmobile	0 improp lane use	Sep	U	0%
0 ss-opp	0 orvialv	 improp turn 	Ocí	1	9.1%
0 other	0 other	0 improp/no signl	Mov	1	9.1%
11 Total	0 truck/bus	0 improp backing	Dec	3	27.3%
11 1010	21 Total	2 unable to stop	Total	- 11	100.0%
	21 10(a)	0 other	Total	1:1	100.0%
		0 unknown			
		0 reck drving			
		0 negl drving			
		21 Total			

	Alcohol	IT	Crasi	185
--	---------	----	-------	-----

Weathe	r Condition	Light C	ondition	Road	Condition			<u>Fatal</u>	<u>P1</u>	<u>\</u>	PDA	Total
0	unknown	0	unknown	0	unknown	Drinking		0			O	0
5	clear	8	day	ខ	dry	Not Drinki	ng	- 0		3	8	13
3	cloudy	1	dawn	2	wet	Tolal		0		3	છ	11
1	fog/smke	0	dusk	0	icy							
1	rain	2	dark/lld	1	snowy	Crash S	everity					
1	snow	0	dark/unitd	Ü	muddy		130		1			
0	sev wind	0	other	0	slushy		<u>l-atal</u>	$\underline{\text{Ini } A}$	Inj B	inj C	No Irij	Total
0	sleet	11	Total	0	debris	Persons	0	0	Ú	В	20	26
11	Total		20 4000 00	11	Total	Crashes	Ü	O	O	3	8	11

Totals

1 9.1%

3 27.3%

9.1%

Crash Data Report					Date Range - 1/1/2005 to 12/31/2007									Pag Prin	Pages: Printed: 10/08/20		5/5 2008	
Time Period	Sun	day	Wor	nday	Tues	day	Wednes	day	Thurs	day	Fri	day	Satur	day	Unkno	wn		Totals
12am - 1am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	.0	0.0%
1am - 2am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2am - 3am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
3am - 4am	0	0.0%	O	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
4am - 5am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
5am - 6am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
6am - 7am	0	0.0%	O	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
7am - 8am	O	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
8am - 9am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	9.1%	0	0.0%	0	0.0%	1	9.1%
9am - 10am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.05
10am - 11am	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
11am - 12pm	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	9.1%	0	0.0%	0	0.0%	1	9.1%
12pm - 1pm	4	9.1%	1	9.1%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	2	18.21
1pm - 2pm	0	0.0%	1	9.1%	0	0.0%	0	0.0%	0	0.0%	1	9.1%	0	0.0%	0	0.0%	2	18.25
2pm - 3pm	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
3pm - 4pm	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
4pm - 5pm	0	0.0%	0	0.0%	1	9.1%	0	0.0%	1	9.1%	0	0.0%	0	0.0%	0	0.0%	2	18.2%
5pm - 6pm	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.096	0	0.0%	0	0.0%	0	0.0%	0	0.0%
6pm - 7pm	0	0.0%	0	0.0%	0	0.0%	. 1	9.1%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	9.15
7pm - 8pm	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	Û	0.0%	1	9.1%	0	0.0%	1	9.1%
8pm - 9pm	0	0.0%	0	0.0%	0	0.0%	. 0	0.0%	0	0.0%	0	0.0%	0	0.0%	ū	0.0%	-0	0.0%
9pm - 10pm	0	0.0%	1	9.1%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	9.15
10pm - 11pm	0	0.0%	0	0.0%	0	0.0%	. 0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.05
11pm - 12am	0	0.0%	0	0.0%	0	0.0%	. 0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.09
Unknown	0	0.0%	0	0.0%	0	0.0%	. 0	0.0%	0	0.0%	0	0.0%	Ü	0.0%	0	0.0%	0	0.05

1 9.1%

1 9.1%

3 27.3%

1 9.1%

0 0.0%

11 100%

Crash Report Dominique Matich CRASH_ID: 227903 FROM_DATE: 1/1/2008 TO_DATE: 6/30/2009 LOCATION: W 11 Mile Rd AT Town Center Dr

								Р	rinled On: 8/21/200
#1 Location Crash Dat Injuries K CVT: Novi	te: 03/04/2 : 0	2008 Day: 1 InJ A:	3 feet S of TOW fue Hour: 12pi 0 Inj B: 0 with intersection		ner: cloudy 0	/ Road Inj 0: Drugs	3 Ho	Crash ht: day w: angle mplaint No: (D: 6948615
Unit No 1 2 UD-10:	E N	Action Prior start on rdwy go straight	Event 1 veh in transpt veh in transpt	Event 2 none none	Event 3 none none	Event 4 none none	Haz Action failed to yeild none	Veh Type sm truck car	Damage rtfront ctriront
#2 Locatio Crash Dat Injuries K: CVT: Novi	e: 04/13/2	008 Day: S Inj A: 0	0.12) 10 feet W iun Hour: 10an D Inj B: 0 straight		oer: sno\v 3	Roadwa Inf 0: 0 Drugs:	Hov	Crash I t: day : angle plaint No: 80	D: 6984431 0017253
Unit No 1 2 UD-10:	N E	Action Prior go straight go straight	Event 1 veh in transpt veh in transpt	Event 2 none none	Event 3 none none	Event d none none	Haz Action none failed to yeild	Veh Type car car	Damage current rtfront
43 Locatio Crash Date njuries K: CVT: Novi	e: 08/23/2	008 Day: S Inj A: 0	feet W of TOWN at Hour: 12pm 0 inj B: 0 inter other		er: clear)	Roadwa Inj 0: 3 Drugs: 1	Ноул:		D: 7077427
1 1	E 9 N 9 W st	o straight - ve lop on road - ve	rent 1 Eve h in transpt ran h in transpt non h in transpt non	off road/r	Event 3 other fixed none none		none		e Damage ctriront littront ctriront
Crash Date njuries K: CVT: Novi Unit No	01/26/20 0 Volt Dir	Day: M InJ A: 0 Area: v	wh intersection Event 1	Weath Inj C: 0 HBD: N Event 2	Event 3		How: Comp Haz Action	day angle laint No: 900 Veh Type	Damage
	N	go straight go straight	veh in transpt veh in transpt	none	none		failed to yeild none	van	rtside ctrfront

Cras	h Туро	Light	Conditions	Mont	her	Road	Condition
1-01	ar Styre	den	(10%)	(1.44)	0-1-25	1.63	9-10965
υ	uncoded	0	uncoded	D	uncoded	0	uncoded
0	single	4	day	2	clear	3	dry
0	head-on	O	dawn	1	cloudy	1	wel
0	head-on/II	0	dusk	0	foa/smoke	0	icy
3	augle	0	dadolid	O.	+ 2 n	-0	o recyy
0	rr-end	0	dark/unlld	1	50007	Ö	inuddy
Û	ir-end/it	0	unknown	υ	wind	υ	slushy
0	rr-end/rt	1	11 5	0	sleet/hail	Ü	debris
0	ss-same			O	unknown	0	unknown
0	ss-opp			1000	1-1 (22-3/2-1	Lesese	Di Series
1	unknown						

Valsiala Type

Ve	310	0	1111	n
VB	1116		I Y IZ	u

Garage.	Type
0	uncoded
7	car
0	olher
n	truck/bus
1	van
0	pickup
1	sm truck
0	motorcycle
0	moped
0	go-cart
0	snovvmobile
0	off-rd veh
Telate:	9

Crashes By Month

210/1109	1,941
1	January
0	February
3	March
ł	April
O	May
0	June
0	July
1	August
0	September
0	October
0	November
0	December
Tagetta	4

Hazardous Action

6.01410)-	Type
5	none
D)	speeding
0	imprp/no signal
0	imprip backing
0	unable to stop
0	olher
0	unknown
0	reckls driving
Ü	negl driving
0	spd too slow
-1	failed to yeild
0	disrgd traffic entri
0	wrong way
0	left of center
()	imprp passing
υ	impro lane use
0	imprp turn
relation	

Crosh	Sever	iv

Not Drinking Total

*	FATAL	ρ.	В	C	1,10) Inf	10151	
Persons	0	0	C	3	3		11	
Crashes	0	0	0	Ä	3		4	
Alcohol in Cr	ashes							
		FATAL		5	1	PD	Total	
Drinking		0		0	l.	0	υ	

Crashes per Hour by Day

AND DEED	Springley /	Allement 17	Time pelicy	Tracking Stay	time stay	preset by	: detelop	100300.00	Tropic
12a - 1a	0	0	0	0	0	0	0	Û	0
1a - 2a	0	0	U	0	0	0	0	0	0
2a - 3a	0	0	0	0	0	0	0	O	0
3a - da	0	0	0	0	0	0	0	0	0
la - 5a	0	0	0	O	0	0	0	0	0
5ล - 6ล	0	0	0	n	0	0	0	0	0
Sa - 7a	0	0	0	0	0	0	0	0	0
7a - 8a	0	0	0	0	0	0	0	0	0
3a - 9a	0	1	0	0	0	0	0	U	1
)a - 10a	0	0	0	0	0	0	0	0	0
10a - 11a	3	0	0	0	0	0	0	0	1
11a - 12p	0	0	0	0	0	0	0	0	0
12p - 1p	o	0	1	0	0	0	1	0	2
1p - 2p	0	0	0	0	O	0	0	0	0
?p - 3p	0	0	0	0	0	0	0	0	0
3p - 4p	0	0	0	0	0	0	0	0	0
tp - 5p	0	0	0	0	0	0	0	0	0
5p - 6p	0	0	0	0	0	0	0	0	0
3p - 7p	0	0	0	0	0	0	0	0	0
7p - 8p	0	0	0	υ	0	0	0	0	0
3p - 9p	0	0	0	0	0	0	0	0	0
p - 10p	0	0	0	0	0	0	0	0	0
10p - 11p	0	0	0	0	0	0	0	0	0
11p - 12a	0	0	0	0	0	0	0	0	0
OUL	THE MENT	E PROPERTY	16000	What I was to	10	(1)	The state of	E .	4

-1

APPENDIX B: AUTOMATED (HOSE) COUNTS

Table B-1. Intersection Approach Volumes on an Average (Tuesday-Thursday) Weekday

Hour		Easib	ound			Westo	ound	- 1		Northb	ound			Southt	ound		Total of
Ending	9/22	9/23	9/24	Avg.	9 22	9/23	9/24	Ανg.	9/22	9/23	9/24	Avg.	9/22	9/23	9/24	Avg.	Averages
.: 1 am :		0	2	1 1		4	11	3	1	2	13	8		3	5	4	20
2 am		1	2	2		8	4	6		4	4	4		4	â	5	17
3 am		0	0	0		0	3	2		3	8	6		0	1	1	8
4 am		2	1	2		4	1	3	Î	0	3	2		0	0	0	6
5 am		0	0	ū		2	2	2		3	5	2		2	1	2	5
6 am		6	7	7		17	21	15		12	10	11		7	10	9	45
7 am		22	22	22		64	70	67		27	34	31		30	41	36	155
8 am		44	41	43		148	134	141		74	53	64		33	81	82	329
9 am		48	58	53		158	158	158		108	84	96		92	99	96	403
10 am		65	58	62		123	109	116		121	98	110		93	83	88	375
11 am	l	57	57	57		106	6.9	101		105	77	91		110	86	98	347
12 pm		126	139	133		213	190	202		151	172	162		185	140	163	658
. 1 pm	204	210		. 207	259	290		275	277	188		233	233	241		237	951
2 pm	155	164		160	244	235		240	202	159		181	209	224		217	798
. 3 pm	91	118		105	162	169		166	155	136		146	166	179	- 5	173	588
: 4 pm	76	92		84	122	173		148	147	157	{	152	106	195		151	534
5 pm	85	103		94	171	178		175	134	150		147	152	202		177	592
. 6 pm	131	121		126	209	192		201	183	206	}	195	168	213		191	712
7 pm .	126	149	1	138	173	169		171	182	185		184	163	215		189	185
8 pm	105	82		94	123	123		123	147	135		1-1	173	176		175	532
9 pm	59	72		. 66	79	113	8.	96	77	100		89	125	153		139	389
. 10 pm	34	22		28	60	44		52	5.5	42		49	67	82		75	203
11 pm	11	13	1	12	25	30		. 58	25	26		28	42	54		48	115
12 am	2	4		3	16	12		14	13	10		12	14	28		21	50
Total	1079	1521	387	1494	1643	2575	799	2509	1601	2113	556	2135	1618	2571	553	2371	8508

Table B-2. Intersection Approach Volumes over a Typical (Friday-Sunday) Weekend

Hour		Eastb	ound			West	ound			North	ound			Southi	oounci		Total for
Ending	10/02	10/03	10/04	Avg.	10/02	10/03	10/04	Avg.	10/02	10/03	10/04	Avg.	10/02	10/03	10/04	Avg.	Saturday
1 am	9	8	12	10	3	3	3	3	5	12	11	9	8	23:	25	19	46
2 am	0	.9	5	5	1	. 2	3	2	7	12	11	10	4	53	39	32	76
3 am	1	0	2	1	1	0	3	1	5	7	11	6	4	3	5	4	10
4 am	2	2	1	2	0	.0	0	3	2	2	1	2	0	3	2	2	7
5 am	1	0	1	1	1	35134	0	1	0	2.	1	1	3	0	0	1	3
.6 am	7	2	0	3	5	4	1	3	16		2	ô	4	11	0	2	3
7.am	28	10	6	15	9	7	5	7	23	17	7	16	26	14 4	5	12	30
8 am	70	19	11	33	42	23	14	26	49	24	20	31	55	. 9	12	25	75
9 am	69	13	8	30	69	31	20	40	. 87	45	26	53	75	41	31	49	130
10 am	48	29	31	36	89	64	40	64	128	100	45	91	87	67	46	67	260
11 am	55	55	28	46	84	68	51	68	102	119	74	98	84	114	60	88	356
12 pm	118	87	33	79	169	94	78	114	178	192	102	157	139	145	92	125	518
1 pm	176	92	70	113	173	100	60	118	196	220	151	189	200	149	127	159	561
2 pm	173	108	78	120	129	92	83	101	193	209	165	189	189	158	129	159	567
3 pm	133	95	90	106	121	72	55	83	142	2.4	208	138	150	. 151	153	151	532
4 pm	99	102	115	105	133	80	81	98	129	225	210	188	179	175	171	175	582
. 5 pm	93	103	103	100	192	7.8	59	110	148	260	181	196	167	157	137	154	598
6 pm	106	151	79	112	231	87.	71	130	216	313	148	226	173	171	172	172	722
7 pm	92	174	93	120	141	98	64	101	172	263	101	179	187	204	130	174	739
8 pm	116	153	74	314	67	61	20	49	145	194	67	135	143	209	118	157	617
9 pm	97	103	38	79	39	31:	10	27	78	:88	34	67	129	139.	- 59	112	361
10 pm	77	74	21	57	15	14	5	11	57	:46	20	41	89	78	28	68	212
11 pm	37	42	11	30	9	13	6	9	62	76	11_	50	61	90.	22	58	221
12 am	24	19	- ô	16	4	1	4	3	19	24	. ô	16	21	28	15	2i	72
Total	1631	1450	916	1332	1727	1024	756	1169	2159	2665	1613	2146	2136	2172	1588	1982	7311

APPENDIX C:

MANUAL (TURNING-MOVEMENT) COUNTS

TRAFFIC STUDY OF ELEVEN MILE / TOWN CENTER INTERSECTION EARLY PM Turning-Movement Count

Thursday, 10-08-09

Cumulative Turning-Movement Count

15 MINUTES ENDING		EB			WB	_		NB			SB		TOTAL
(Enter Dala)	LT	TH	RT	LT	TH	Rĩ	LT	TH	RT	LT	TH	RT	TOTAL
12:15	5	13	15	12	26	26	20	35	5	10	33	7	207
12:30	8	25	34	19	44	49	31	5-1	13	28	74	7	386
12:45	17	51	50	28	70	72	44	77	21	50	128	8	616
1:00	25	74	74	43	85	95	49	101	29	74	164	3.7	824
1:15	32	98	89	57	101	114	59	128	38	86	200	15	1017
1:30	36	123	110	62	110	140	69	166	46	98	235	17	1212
1:45	39	132	119	72	123	154	75	192	55	112	253	18	1344
2:00	41	145	132	76	132	169	73	214	57	124	272	20	1460

Turning-Movement Count by 15-Minute Interval

15 MINUTES		EB			WB			NB			SB		TOTAL
ENDING	LT	TI-J	RT	LΤ	TH	RT	LΤ	TH	RT	LT	TH	RT	TOTAL
12:15	5	13	15	12	26	26	20	35	5	10	33	7	207
12:30	3	12	19	7	18	23	11	19	8	18	41	0	179
12:45	9	26	16	9	26	23	13	23	- 8	22	54	1	230
1:00	8	23	24	15	15	23	5	24	8	24	36	3	208
1:15	7	24	15	14	1ô	19	10	27	9	12	36	4	193
1:30	4	25	21	5	9	26	10	38	8	12	35	2	195
1:45	3	9	9	10	13	14	6	2ô	9	14	18	1	132
2:00	2	13	13	4	9	15	3	22	2	12	19	2	116
TOTAL	41	145	132	76	132	169	78	214	57	124	272	20	1460

Hourly Total

HOUR		83			WB			NB				TOTAL	
BEGINNING	LT	TH	RJ	ĹŦ	TI-l	RT	L,T	T)-I	RT	LT	TH	RT	TOTAL
12:00	25	74	74	43	85	95	-19	101	29	74	164	11	824
12:15	27	85	74	45	75	88	39	93	33	76	167	- B	810
12:30	28	98	76	43	66	91	38	112	33	70	161	10	826
12:45	22	81	69	44	53	82	31	115	34	62	125	10	728
1:00	16	71	58	33	47	74	29	113	28	50	108	9	636

Early PM Peak Hour

1-IOUR		EB			WB			NB				TOTAL	
BEGINNING	LT	TΗ	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	TOTAL
12:30	28	98	76	43	66	91	38	112	33	70	161	10	826
PHF (Peak-Hour Factor)	0.78	0.94	0.79	0.72	0.63	0.88	0.73	0.74	0.92	0.73	0.75	0.63	0.90
TITI (I Can-Flodi Factor)		0.92			0.86			0.82			0.78		CF-EPC)

TRAFFIC STUDY OF ELEVEN MILE / TOWN CENTER INTERSECTION

LATE PM Turning-Movement Count

Thursday, 10-08-09

Cumulative Turning-Movement Count

15 MINUTES ENDING	f	EB			W8			NB			SB		TOTAL
(Enter Data)	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT:	TH	RT	HUMBL
5:15	3	- 8	10	33	18	31	12	39	9	10	33	2	214
5:30	6	12	28	74	43	57	25	61	15	26	-83	- 5	435
5:45	6	17	46	109	62	73	35	123	17	45	167	- 8	540
6:00	9	29	65	119	77	89	43	154	19	54	135	6	610
8:15	10	40	66	132	50	108	59	195	26	86	173	9	994
8:30	13	47	89	136	100	120	70	213	26	77	207	13	1123
6:45	17	52	110	144	115	139	81	251	27	89	245	18	1286
7:00	17	57	122	152	124	158	89	277	30	97	273	10	1415

Turning-Movement Count by 15-Minute Interval

15 MINUTES		EB			WB			NB			SB		TOTAL
ENDING	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	10170
5:15	3	8	10	- 30	16	31	12	39	. 2	10	35	2	214
5:30	3	4	18	38	27	28	13	42	5	16	25	3	221
5:45	2	5	18	35	10	. 115	10	42	2	19	44	1	213
6:00	1	12	1.9	10	15	16	8	41	2	D	29	0	162
6:15	1	11	21	12	13	1.9	16	31	7	12	37	. 3	184
3:30	3	7	13	- 5	10	12	-11	13	0	11	34	4	129
6:45	1	- 5	11	6	15	10	11	32	1	12	31	3.	153
7:00	0	5	12	3	9	19	8	23	3	0	20	3	129
TOTAL	17	57	122	152	124	158	89	277	30	67	273	15	1415

Hourly Total

HOUR		EB			WB			N3			SB		TOTAL
BEGINNING	LT	TH	RT	LT	TH	RT	4.7	TH	RY	LT	TH	RT	1016
5:00	9	28	65	119	77	80	43	164	1.0	54	135	6	810
5:15	7	32	76	98	74	77	47	158	17	58	135	7	780
5:30	7	35	71	64	57	63	45	132	11	51	144	8	668
5:45	9	35	64	35	53	88	46	128	10	44	138	10	638
6:00	8	23	57	33	47	69	48	113	11	43	137	:3	605

Late PM Peak Hour

HOUR		EB			WB			NB			SB		2024
BEGINNING	LT	TH	RT	LT	TH	RT	1.7	TH	3.1	47	TH	RT	HOTHE
5:00	9	29	65	119	77	89	43	164	19	54	136	6	810
PHF (Peak-Hour Factor)	0.75	0.60	0.86	0.78	0.71	0.72	0.83	0.98	0.53	0.71	0.77	0.50	1969691
PHF (Peak-Hour Factor)		08.0			0.78			0.93			0.77		0.92

TRAFFIC STUDY OF ELEVEN MILE / TOWN CENTER INTERSECTION LATE PM Turning-Movement Count

Saturday, 10-10-09

Cumulative Turning-Movement Count

5 MINUTES ENDING		EB			WB			NB			88	,	TOTAL
(Enter Data)	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	101142
5:15	4	8	19	5	10	17	2	25	4	3	19	- 1	123
5:30	11	13	36	15	13	29	7	42	7.	10.	45	2	239
5:45	16	23	49	20	25	37	22	66	10	27	03	2	203
5:00	18	26	61	25	32	53	32	95	14	30	97	3	460
8:15	23	44	77	26	43	64	48	123	17	41	124	5	635
6:30	25	54	96	30	51	74	65	149	21	47	155	- 5	773
6:45	26	66	117	32	56	84	54	173	27	55	202	9	954
7:00	28	75	134	37	67	99	97	193	20	65	230	- 11	107-1

Turning-Movement Count by 15-Minute Interval

15 MINUTES		EB			MB			NB			58		TOTAL
ENDING	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH 1	RT	
5:15	4	8	19	5	10	17	.3	25	4	8	19	1	123
5:30	7	5	17	10		1.2	- 4	17	3		28	1	116
5.45	5	10	13	5	10	8	1.6	25	3	- 11	18	0	124
6.00	2	5	12	- 5	. 6	16	10	27	4 7	. 3	34	1	125
4.15	- 5	18	16	1	1.1	11.	10	28	3	1.1	27	3	347
6:30	2	10	19	14	5	10	17	26	4	15	31	1	138
6:45	1	12	21	2	7	10	19	24	6	9	47	3	151
7:00	2	9	17	5	.0	15	13	20	2	9	37	29	140
TOTAL	28	75	134	37	87	99	97	153	20	-65	235	1.3	1074

Hourly Total

HOUR BEGINNING		EB			WB			NB			88		TOTAL
	LT	TH	RT	1.7	TH	RT	LT	TH	RT	LT	TH	RT	1,500,650
5.00	18	28	- 61	25	32	53	32	95	14	30	97	3	438
5:15	19	36	58	:21	33	47	45	30	13	33	105	+	512
5:30	14	41	60	15	35	45	56	107	14	31	110	4	534
5:45	10	43	- 68	12	32	47	62	105	17	29	139	7	571
6:00	10	47	73	12	35	45	85	88	15	35	142	8 .	588

Late PM Peak Hour

HOUR		EB			WB			NB:			SB		TOTAL
BEGINNING	LT	TH	RT	100									
6:00	10	47	73	12	35	46	65	98	15	35	142	8	586
	0.50	0.73	0.87	0.60	0.80	0.77	0.86	0,88	0.83	08.0	0.76	0.87	0.01
PHF (Peak-Hour Factor)		0.88			0.80			0.91			0.75		0.01

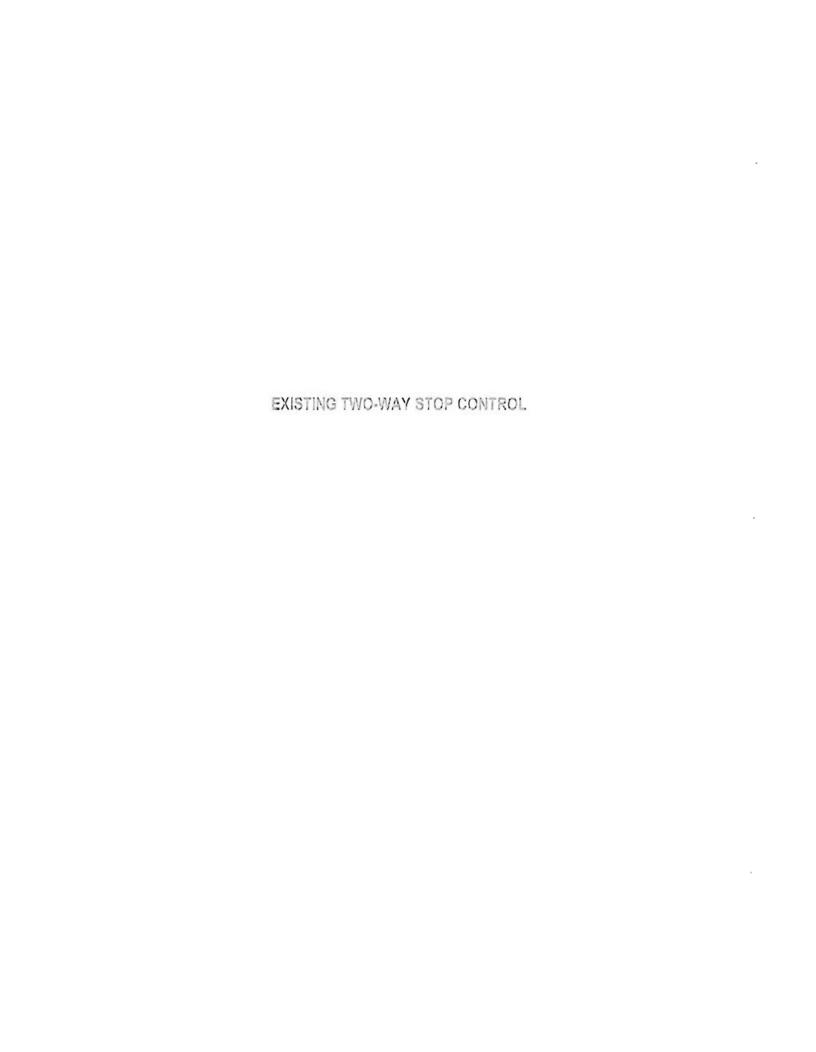
APPENDIX D:

CAPACITY ANALYSES

INTERSECTION CAPACITY ANALYSES

Intersection capacity analyses were conducted using *Synchro* 7 software, based on methodologies contained in the *Highway Capacity Manual (HCM*, Transportation Research Board, 2000). The primary objective of such analyses is to determine level of service, a qualitative measure of the "ease" of traffic flow based on average vehicular delay. Analytical models are used to estimate the average delay per vehicle for specific movements, minor multilane approaches – and in the case of all-way stop-controlled and signalized intersections – major multilane approaches and the overall intersection as well. These models account for lane configuration, grade, type of traffic control, traffic volume and composition, and other traffic flow parameters.

Level of service (LOS) is expressed using a letter grading scale, with A being the highest level and F being the lowest level. Achieving an overall intersection LOS of D is generally acceptable, although individual movements experiencing (or expected to experience) LOS E or F may be considered for mitigation.

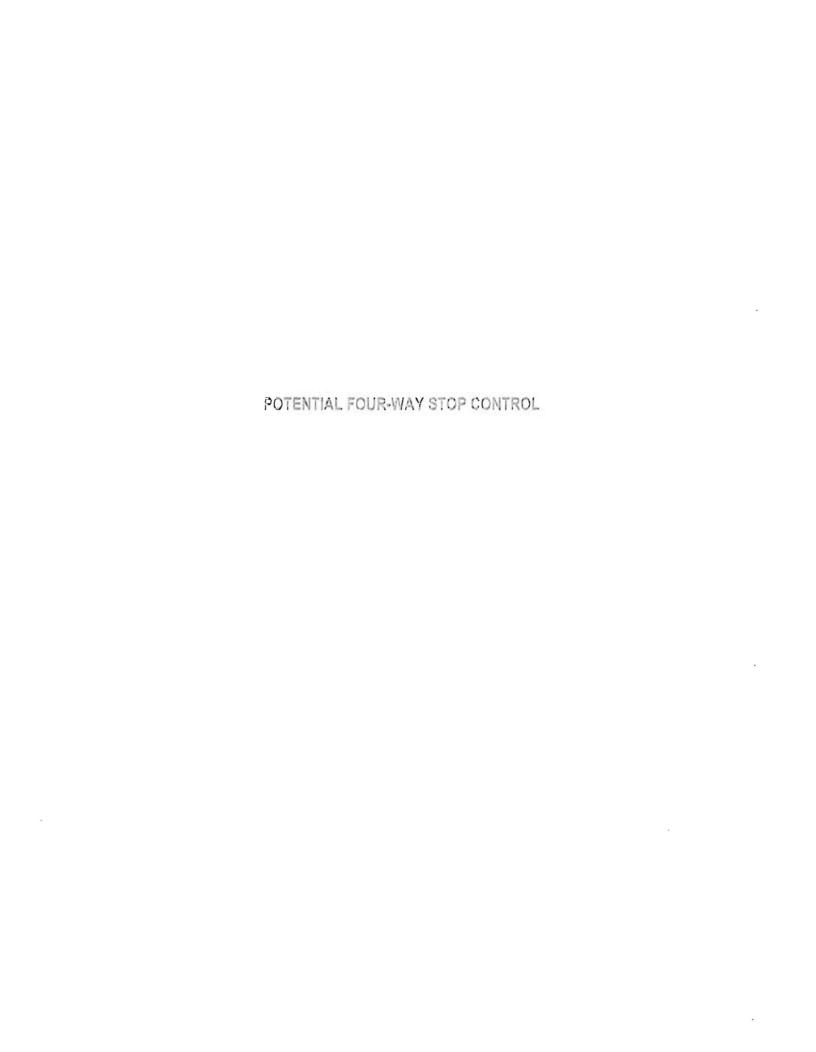

The following table defines LOS, in terms of average delay per vehicle, for unsignalized intersections (intersections include junctions of driveways and roads as well as roads and roads).

Level of Service	Control Delay per Vehicle (seconds)
A	≤ 10
В	> 10 and ≤ 15
C	> 15 and ≤ 25
D	> 25 and ≤ 35
Ε	> 35 and ≤ 50
F	> 50

Level of Service Criteria for Unsignalized Intersections

According to the *Highway Capacity Manual*, level of service at a two-way stop-controlled intersection is defined only for minor movements (i.e., minor approach left and right turns and major approach left turns). LOS is not defined for the intersection as a whole, since most vehicles pass through the intersection without stopping and thus experience negligible delay.

It is important to realize how *HCM* methodology computes average approach delay and average intersection delay at a one- or two-way-stop-controlled intersection where left turns from the major road share a single lane with through (and possibly right-turning) traffic. In applying the equations for weighted average delay, the methodology assumes zero delay for major-road through and right-turning traffic (believing them to be negligible), but then divides by the total approach (or intersection volume). Hence, the resulting average delay per vehicle is generally significantly lower than what the average left-turn delay per left-turn vehicle would be if, in fact, the latter was actually reported by the software (it is not). Caution should therefore be used in interpreting the reported average delay per vehicle on approaches and at intersections having shared (left-through or left-through-right) lanes on the major road.



140000000000000000000000000000000000000	V 2 2 2	And the second second	The same of the same	3.11	Contract Con	Andrew Co. Co., with the same of	
0.		A 41:1	177	0		A - 1	Pro
	1 1	MILLO	20	ic.		CONTOR	1 11.
U.	1 1	IVIIIC;	1 10	1.35	1 (74411	Center	

	A	>	7	1	4	A.	4	Ť	1	1/20	.].	1
Movement	EBL.	EBT	EBR	WBL	WBT	WER	NBL	MBT	MBR	SBI.	SBT	SBR
Lane Configurations		-5)				40		- 1	T	A		
Volume (veh/h)	28	98	76	43	66	91	38	112	33	70	161	10
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.86	0.86	0.86	0.82	0.82	0.82	0.78	0.78	0.78
Hourly flow rate (vph)	30	107	83	50	77	106	46	137	40	-30	206	13
Pedestrians												
Lane Width (ft)												
Walking Speed (fVs)												
Percent Blockage												
Right lurn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked	272120	1 122000	20000	2212000	172820243	V 575850	0.00000			79/12/CAV		
vC, conflicting volume	766	662	213	751	628	137	219			177		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol			23.2			320	1.2					
vCu, unblocked vol	766	662	213	751	628	137	219			177		
(C, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
(F (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	86	69	90	76	79	88	97			94		
cl/l capacity (veh/h)	220	345	827	208	361	912	1350			1399		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2				
Volume Total	220	50	183	46	137	40	90	219				
Volume Left	30	50	0	46	0	0	90	0				
Volume Right	83	0	106	0	0	40	0	13				
cSH	402	208	556	1350	1700	1700	1399	1700				
Volume to Capacity	0.55	0.24	0.33	0.03	0.08	0.02	0.06	0.13				
Queue Length 95th (ft)	79	23	36	3	0	0	5	0				
Control Delay (s)	24.3	27.6	14.6	7.8	0.0	0.0	7.7	0.0				
Lane LOS	С	D	В	Α			Α					
Approach Delay (s)	24.3	17.4		1.6			2.3					
Approach LOS	С	C										
Intersection Summary												
Average Delay			10.6									
Intersection Capacity Utilization	ř		44.7%	ICI	U Level o	Service			Α			
Analysis Period (min)			15									

Movement	رفر EBL	→> EBT	V	1	4	4	-25	Ť	p	100	1	1
	EBL	FOT					,	3	1	95	7	-7
V 27 72 W		CDI	EBR	WBL	WBT	WBR	MBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		al.			-					T	- E	
Volume (veh/h)	9	29	65	119	77	69	43	164	19	54	136	ô
Sign Control		Stop			Slop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.80	0.80	0.80	0.78	0.78	0.78	0.93	0.93	0.93	0.77	0.77	0.77
Houly flow rate (vph)	11	36	81	153	99	114	46	176	20	70	177	3
Pedestrians												
Lane Width (ii)												
Walking Speed (fVs)												
Percent Blockage												
Right lurn flare (veh)												
Median type								None			Mone	
Median storage veh)												
Upstream signal (ft)					9							
pX, platoon unblocked												
vC, conflicting volume	753	610	181	685	593	176	184			197		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	753	610	181	685	593	176	184			197		
tC, single (s)	7.1	3.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
IF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	95	90	91	46	74	87	97			95		
cl// capacity (veh/h)	213	375	862	285	384	867	1390			1376		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2				
Volume Total	129	153	213	46	176	20	70	184				
Volume Left	11	153	0	46	0	0	70	0				
Volume Right	81	0	114	0	0	20	0	8				
	529	285	547	1390	1700	1700	1376	1700				
Volume to Capacity	0.24	0.54	0.39	0.03	0.10	0.01	0.05	0.11				
Queue Length 95th (ft)	24	73	46	3	0	0	4	0				
	14.0	31.3	15.7	7.7	0.0	0.0	7.8	0.0				
Lane LOS	8	D	С	Α			Α					
	14.0	22.2		1.5			2.1					
Approach LOS	В	C										
Intersection Summary												
Average Delay			10.9									
Intersection Capacity Utilization			34.6%	ICI	J Level of	Service			Α			
Analysis Period (min)			15									

	1	->	Y	7		A	4	7	P	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	MBL	MBT	NBR	SBL	SBT	SBR
Lane Configurations			13 20072				55554577			74	18	
Volume (veh/h)	10	47	73	12	35	-16	65	98	15	35	142	S
Sign Control		Slop			Stop			Free			Free	
Grade	VENTESEN.	0%	075501	08/91/2020	0%	120222	12712200	0%	100 FASSAS	REMARKS	0%	0.2000.020
Peak Hour Factor	0.88	0.88	0.88	0.80	0.80	0.80	0.91	0.91	0.91	0.78	0.78	0.78
Hourly flow rate (vph)	11	53	83	15	49	58	71	108	16	45	182	10
Pedestrians												
Lane Width (ft)												
Walking Speed (fVs)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh) Upstream signal (ft)												
oX, platoon unblocked												
vC, conflicting volume	607	544	187	632	533	108	192			124		
vC1, stage 1 conf vol	301	044	707	132	333	700	152			129		
vC2, stage 2 conf vol												
vCu, unblocked vol	607	544	187	632	533	108	192			124		
C, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
C, 2 stage (s)		V	38.57			39,557	33,805					
F (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
00 queue free %	97	87	90	95	89	94	95			97		
civi capacity (veh/h)	331	410	855	300	416	946	1381			1463		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2				
Volume Total	148	15	101	71	108	16	45	192				
Volume Left	11	15	0	71	0	0	45	0				
Volume Right	83	0	58	0	0	16	0	10				
SH	565	300	611	1381	1700	1700	1463	1700				
Volume to Capacity	0.26	0.05	0.17	0.05	0.06	0.01	0.03	0.11				
Queue Length 95th (ft)	26	4	15	4	0	0	2	0				
Control Delay (s)	13.6	17.6	12.1	7.7	0.0	0.0	7.5	0.0				
ane LOS	В	С	В	A			Α					
Approach Delay (s)	13.6	12.8		2.8			1.4					
Approach LOS	8	В										
ntersection Summary			12,000,000									
Average Delay			6.3	WW.4550	act at a	2728 E-0			-			
ntersection Capacity Utilization			34.8%	ICI	J Level of	Service			A			
Analysis Period (min)			15									

	J. A.	->-	70	4	4	1	4	1	P	10	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	MBL	NBT	MBR	SBL	SBT	SBR
Lane Configurations		1										
Sign Control		Stop			Slop			Stop			Slop	
Volume (vph)	28	98	76	43	66	91	38	112	33	70	161	10
Peak Hour Factor	0.92	0.92	0.92	0.86	0.86	0.86	9.82	0.82	0.82	0.78	0.78	0.78
Hourly flow rate (vph)	30	107	83	50	77	106	46	137	40	90	206	13
Direction, Lane il	EB I	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2					
Volume Total (vph)	220	50	183	46	177	90	219					
Volume Left (vph)	30	50	0	46	0	90	0					
Volume Right (vph)	83	0	106	0	40	0	13					
Hadj (s)	.0.16	0.53	-0.37	0.53	-0.13	0.53	-0.01					
Departure Headway (s)	6.2	7.0	6.0	6.9	6.3	6.8	6.2					
Degree Utilization, x	0.38	0.10	0.31	0.09	0.31	0.17	0.38					
Capacity (veh/h)	542	480	553	484	536	498	545					
Control Delay (s)	13.0	9.5	10.5	9.4	10.8	10.0	11.8					
Approach Delay (s)	13.0	10.3		10.5		11.3						
Approach LOS	8	В		В		8						
Intersection Summary												
Delay			11.3									
HCM Level of Service			8									
Intersection Capacity Utilization	1		44.7%	IC	U Level o	f Service			Α.			
Analysis Period (min)			15									

	A	->	7	4	4	4.	1	1	1>	12	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations							1					-
Sign Control		Slop			Stop			Stop			Slop	
Volume (vph)	9	29	65	119	77	89	43	164	19	54	136	6
Peak Hour Factor	0.80	0.80	0.80	0.78	0.78	0.78	0 93	0.93	0.93	0.77	0.77	0.77
Hourly flow rate (vph)	11	36	81	153	99	114	46	176	20	70	177	8
Direction, Lane #	EB 1	WB 1	WB 2	NB I	NB 2	SB 1	SB 2					
Volume Total (vph)	129	153	213	46	197	70	184					
Volume Left (vph)	11	153	U	46	0	70	0					
Volume Right (vph)	81	0	114	0	20	0	8					
Hadj (s)	-0.33	0.53	.0.34	0.53	-0.04	0.53	0.00					
Departure Headway (s)	6.2	6.7	5.8	6.9	6.3	6.9	6.3					
Degree Utilization, x	0.22	0.28	0.34	0.09	0.35	0.13	0.32					
Capacity (veh/h)	536	508	585	490	537	491	535					
Control Delay (s)	10.9	11.1	10.7	9.4	11.4	9.7	112					
Approach Delay (s)	10.9	10.9		11.0		10.8						
Approach LOS	3	8		8		В						
Intersection Summary												
Delay			10.9									
HCM Level of Service			В									
Intersection Capacity Utilization			35.7%	IC	U Level o	Service			A.			
Analysis Period (min)			15									

	A	->-	7	1	-	A.	4	1	1	1	1	1
iviovement	EBL	EBT	EBR	NBL	WBT	WBR	NBL.	NBT	MBR	SEL	SBT	SER
Lane Configurations												
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	10	47	73	12	35	46	65	98	15	35	142	8
Peak Hour Factor	0.88	9.88	0.88	0.80	0.80	0.80	0.91	0.91	0.91	0.78	0.78	0.78
Hourly flow rate (vph)	11	53	83	15	44	58	71	108	16	45	182	10
Direction, Lane#	EB 1	WB 1	WB 2	MB 1	NB 2	SB 1	SB 2					
Volume Total (vph)	148	15	101	71	124	45	192					
Volume Left (vph)	11	15	0	71	0	.15	0					
Volume Right (vph)	83	0	58	0	16	0	10					
Hadj (s)	-0.29	0.53	4).36	0.53	-0.06	0.53	0.00					
Departure Headway (s)	5.5	6.4	5.5	6.1	5.5	6.0	5.5					
Degree Utilization, x	0.22	0.03	0.15	0.12	0.19	0.07	0.29					
Capacity (veh/h)	611	523	608	565	625	568	628					
Control Delay (s)	10.1	8.3	8.2	3.7	8.5	8.3	9.5					
Approach Delay (s)	10.1	8.3		8.6		9.3						
Approach LOS	8	A		A		.Α.						
Intersection Summary												
Delay			9.1									
HCM Level of Service			Α									
Intersection Capacity Utilization			34.8%	IC	U Level o	f Service			A			
Analysis Period (min)			15									

10/16/2009

APPENDIX E:

MMUTCD CRITERIA FOR MULTI-WAY STOP CONTROL

ਨੋਵਰੀ 2003 Edition : 2005 ਐਂਟ ਤੋਰੇਸ਼ਮਲੇਅ

Once the decision has been made to install two-way stop control, the decision regarding the appropriate street to stop should be based on engineering judgment. In most cases, the street carrying the lowest volume of traffic should be stopped.

A STOP sign should not be installed on the major street unless justified by a traffic engineering study. Support:

The following are considerations that might influence the decision regarding the appropriate street upon which to install a STOP sign where two streets with relatively equal volumes and/or characteristics intersect:

- Stopping the direction that conflicts the most with established pedestrian crossing activity or school walking routes;
- Stopping the direction that has obscured vision, dips, or bumps that already require drivers to use lower operating speeds;
- C. Stopping the direction that has the longest distance of uninterrupted flow approaching the intersection; and
- D. Stopping the direction that has the best sight distance to conflicting traffic.

The use of the STOP sign at highway-railroad grade crossings is described in Section 8B.08. The use of the STOP sign at highway-light rail transit grade crossings is described in Section 10C.04.

Section 2B.06 STOP Sign Placement

Standard:

The STOP sign shall be installed on the right side of the approach to which it applies. When the STOP sign is installed at this required location and the sign visibility is restricted, a Stop Ahead sign (see Section 2C.29) shall be installed in advance of the STOP sign.

The STOP sign shall be located as close as practical to the intersection it regulates, while optimizing its visibility to the road user it is intended to regulate.

STOP signs and YIELD signs shall not be mounted on the same post.

Guidance:

Other than a DO NOT ENTER sign, no sign should be mounted back-to-back with a STOP sign in a manner that obscures the shape of the STOP sign.

Support:

Section 2A.16 contains additional information about separate and combined mounting of other signs with STOP signs.

Guidance:

Stop lines, when used to supplement a STOP sign, should be located at the point where the road user should stop (see Section 3B.16).

If only one STOP sign is installed on an approach, the STOP sign should not be placed on the far side of the intersection.

Where two roads intersect at an acute angle, the STOP sign should be positioned at an angle, or shielded, so that the legend is out of view of traffic to which it does not apply.

Where there is a marked crosswalk at the intersection, the STOP sign should be installed in advance of the crosswalk line nearest to the approaching traffic.

Option:

At wide-throat intersections or where two or more approach lanes of traffic exist on the signed approach, observance of the stop control may be improved by the installation of an additional STOP sign on the left side of the road and/or the use of a stop line. At channelized intersections, the additional STOP sign may be effectively placed on a channelizing island.

Support:

Figure 2A-2 shows examples of some typical placements of STOP signs.

Section 2B.07 Multiway Stop Applications

Support:

Multiway stop control can be useful as a safety measure at intersections if certain traffic conditions exist. Safety concerns associated with multiway stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Multiway stop control is used where the volume of traffic on the intersecting roads is approximately equal.

The restrictions on the use of STOP signs described in Section 23.05 also apply to multiway stop applications.

- Guidance:

The decision to instaff multiway stop control should be based on an engineering study.

the following criteria should be considered in the engineering study for a multiway STOP sign installation:

- A. Where traffic control signals are justified, the multiway stop is an interim measure that can be installed quickly to control traffic while arrangements are being made for the installation of the traffic control signal.
- B. A crash problem, as indicated by 5 or more reported crashes in a 12-month period that are susceptible to correction by a multiway stop installation. Such crashes include right- and left-turn collisions as well as right-angle collisions.
- C. Minimum volumes:
 - The vehicular volume entering the intersection from the major street approaches (total of both approaches) averages at least 300 vehicles per hour for any 8 hours of an average day, and
 - The combined vehicular, pedestrian, and bicycle volume entering the intersection from the minor street approaches (total of both approaches) averages at least 200 units per hour for the same 8 hours, with an average delay to minor-street vehicular truffic of at least 30 seconds per vehicle during the highest hour, but
 - If the 85th-percentile approach speed of the major-street traffic exceeds 65 km/h or exceeds 40 mph, the minimum vehicular volume warrants are 70 percent of the above values.
- D. Where no single criterion is satisfied, but where Criteria B. C.1, and C.2 are all satisfied to 80 percent of the minimum values. Criterion C.3 is excluded from this condition.

Option:

Other criteria that may be considered in an engineering study include:

- A. The need to control left-turn conflicts:
- B. The need to control vehicle/pedestrian conflicts near locations that generate high pedestrian volumes;
- C. Locations where a road user, after stopping, cannot see conflicting traffic and is not able to reasonably safely negotiate the intersection unless conflicting cross traffic is also required to stop; and
- D. An intersection of two residential neighborhood collector (through) streets of similar design and operating characteristics where multiway stop control would improve traffic operational characteristics of the intersection.

Section 2B.08 YIELD Sign (R1-2)

Standard:

The YIELD (R1-2) sign (see Figure 2B-1) shall be a downward-pointing equilateral triangle with a wide red border and the legend YIELD in red on a white background.

Support:

The YIELD sign assigns right-of-way to traffic on certain approaches to an intersection. Vehicles controlled by a YIELD sign need to slow down or stop when necessary to avoid interfering with conflicting traffic.

Section 2B.09 YIELD Sign Applications

Option:

YIELD signs may be used instead of STOP signs if engineering judgment indicates that one or more of the following conditions exist:

- A. When the ability to see all potentially conflicting traffic is sufficient to allow a road user traveling at the posted speed, the 85th-percentile speed, or the statutory speed to pass through the intersection or to stop in a reasonably safe manner.
- B. If controlling a merge-type movement on the entering roadway where acceleration geometry and/or sight distance is not adequate for merging traffic operation.
- C. The second crossroad of a divided highway, where the median width at the intersection is 9 m (30 ft) or greater. In this case, a STOP sign may be installed at the entrance to the first roadway of a divided highway, and a YIELD sign may be installed at the entrance to the second roadway.
- D. An intersection where a special problem exists and where engineering judgment indicates the problem to be susceptible to correction by the use of the YIELD sign.

Standard:

A VIELD (R1-2) sign shall be used to assign right-of-way at the entrance to a roundabout intersection.